[R] save plm coefficients

spencerg spencer.graves at prodsyse.com
Sat May 30 03:20:37 CEST 2009


  I'm not sure what you are asking, especially since I do not have 
access to "regaccdis". However, will something like the following do 
what you want?


caeLvls <- c(1, 5, 10)
for(i in 1:3)
coef[i,2:4] <- 
coef(plm(ff,data=regaccdis,na.action=na.omit,model="pooling",subset=(regaccdis$caedois==caeLvls[i]))) 



If this does NOT answer your question, PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Hope this helps.
Spencer

Cecilia Carmo wrote:
> Hi R-helpers,
>
> I want to determine the coefficients of the following regression for 
> several subsets, and I want to save it in a dataframe:
> The data is in «regaccdis», «regaccdis$caedois» is the column that 
> defines the subsets and the function I have runned is
> coef(plm(ff,data=regaccdis,na.action=na.omit,model="pooling",subset=(regaccdis$caedois==i))) 
>
> I‘ve created a dataframe named «coef» to store the coefficients like 
> this :
> caedois b1 b2 b3
> 1 1 0.033120395 -20.29478 -0.27463886
> 2 5 -0.040629634 74.54240 -0.06995842
> 3 10 -0.001116816 35.23986 0.21432718
>> And I runned the following regressions to obtain those values:
> coef[1,2:4] <- 
> coef(plm(ff,data=regaccdis,na.action=na.omit,model="pooling",subset=(regaccdis$caedois==1))) 
>
> coef[2,2:4] <- 
> coef(plm(ff,data=regaccdis,na.action=na.omit,model="pooling",subset=(regaccdis$caedois==5))) 
>
> coef[3,2:4] <- 
> coef(plm(ff,data=regaccdis,na.action=na.omit,model="pooling",subset=(regaccdis$caedois==10))) 
>
>
> But I need to do this more than 50 times!
> Anyone could help me with a loop or with a function like apply?
>
> Thank you!
> Cecília (Universidade de Aveiro – Portugal)
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>




More information about the R-help mailing list