[R] Multi-variate rcs() error
Frank E Harrell Jr
f.harrell at vanderbilt.edu
Fri May 1 00:04:23 CEST 2009
x wrote:
> Hi,
>
> My code, output, error message, and sample data are all below. As always, all help is appreciated.
>
> Code:
> ====
> library(Design); library(lattice)
>
> df = read.table("./data_cub4.txt", header=TRUE, nrows=100)
> attach(df); dd = datadist(df); options(datadist = 'dd'); describe(df);
>
> m = (y1 ~ ( rcs(x1,3) + rcs(x2,3) ) )
> f = ols(m, data=df)
> print(f)
> print( Function(f) )
> detach(df)
>
> Output:
> ======
> Linear Regression Model ...
> n Model L.R. d.f. R2 Sigma
> 100 720.7 4 0.9993 82.44
> Residuals:
> Min 1Q Median 3Q Max
> -113.21 -70.46 -20.09 65.77 214.77
> Coefficients:
> Value Std. Error t Pr(>|t|)
> Intercept 757.85 1.647e+17 4.601e-15 1
> x1 35.58 9.080e+14 3.919e-14 1
> x1' 85.92 6.475e+14 1.327e-13 1
> x2 NA 1.797e+14 NA NA
> x2' NA 6.475e+14 NA NA
>
> Residual standard error: 82.44 on 95 degrees of freedom
> Adjusted R-Squared: 0.9992
>
> Error in if (coef[i] > 0 & (i > 2 | coef[1] != 0 | Intc != 0)) "+" else NULL : missing value where TRUE/FALSE needed
>
> Sample data:
> =================
> config benchmark y1 x1 x2 noise
> 1 verify2 1008.2 1 1000 0.72
> 2 verify2 1019 2 999 1.6
>
It just appears that you have perfect prediction, so you have quite an
unusual dataset to be doing inference on.
Frank
--
Frank E Harrell Jr Professor and Chair School of Medicine
Department of Biostatistics Vanderbilt University
More information about the R-help
mailing list