[R] ROCR package finding maximum accuracy and optimal cutoff point
Saeed Abu Nimeh
sabunime at gmail.com
Sat Mar 28 09:38:46 CET 2009
Found the solution to my own question. To find the false positive rate
and the false negative rate that correspond to a certain cutoff point
using the ROCR package, one can do the following (for sure there is
simpler ways, but this works):
library(ElemStatLearn)
library(rpart)
data(spam)
##################################
# create a train and test sets #
##################################
index<- 1:nrow(spam)
testindex <- sample(index, trunc(length(index)/3))
testset <- spam[testindex, ]
trainset <- spam[-testindex, ]
rpart.model <- rpart(spam ~ ., data = trainset) # training model
##################################
# use ROCR to calculate accuracy #
# fp,fn,tp,tn rates #
##################################
library(ROCR)
rpart.pred2 <- predict(rpart.model, testset)[,2] #testing model
pred<-prediction(rpart.pred2,testset[,58]) #prediction using rocr
perf.acc<-performance(pred,"acc") #find list of accuracies
perf.fpr<-performance(pred,"fpr") # find list of fp rates
perf.fnr<-performance(pred,"fnr") # find list of fn rates
acc.rocr<-max(perf.acc at y.values[[1]]) # accuracy using rocr
#find cutoff list for accuracies
cutoff.list.acc <- unlist(perf.acc at x.values[[1]])
#find optimal cutoff point for accuracy
optimal.cutoff.acc<-cutoff.list.acc[which.max(perf.acc at y.values[[1]])]
#find optimal cutoff fpr, as numeric because a list is returned
optimal.cutoff.fpr<-which(perf.fpr at x.values[[1]]==as.numeric(optimal.cutoff.acc))
# find cutoff list for fpr
cutoff.list.fpr <- unlist(perf.fpr at y.values[[1]])
# find fpr using rocr
fpr.rocr<-cutoff.list.fpr[as.numeric(optimal.cutoff.fpr)]
#find optimal cutoff fnr
optimal.cutoff.fnr<-which(perf.fnr at x.values[[1]]==as.numeric(optimal.cutoff.acc))
#find list of fnr
cutoff.list.fnr <- unlist(perf.fnr at y.values[[1]])
#find fnr using rocr
fnr.rocr<-cutoff.list.fnr[as.numeric(optimal.cutoff.fnr)]
Now acc.rocr, fpr.rocr, fnr.rocr will give you the accuracy, fpr, and
fnr percentages
Saeed Abu Nimeh wrote:
> If we use the ROCR package to find the accuracy of a classifier
> pred <- prediction(svm.pred, testset[,2])
> perf.acc <- performance(pred,"acc")
>
> Do we find the maximum accuracy as follows (is there a simplier way?):
>> max(perf.acc at x.values[[1]])
>
> Then to find the cutoff point that maximizes the accuracy do we do the
> following (is there a simpler way):
>> cutoff.list <- unlist(perf.acc at x.values[[1]])
>> cutoff.list[which.max(perf.acc at y.values[[1]])]
>
> If the above is correct how is it possible to find the average false
> positive and negative rates from the following
> perf.fpr <- performance(pred, "fpr")
> perf.fnr <- performance(pred, "fnr")
>
> The dataset that consists of two columns; score and a binary response,
> similar to this:
> 2.5, 0
> -1, 0
> 2, 1
> 6.3, 1
> 4.1, 0
> 3.3, 1
>
>
> Thanks,
> Saeed
> ---
> R 2.8.1 Win XP Pro SP2
> ROCR package v1.0-2
> e1071 v1.5-19
>
More information about the R-help
mailing list