[R] p-values from VGAM function vglm
David Winsemius
dwinsemius at comcast.net
Sun Jun 7 04:27:03 CEST 2009
On Jun 6, 2009, at 4:13 AM, Emmanuel Charpentier wrote:
> Dear David,
>
> Le vendredi 05 juin 2009 à 16:18 -0400, David Winsemius a écrit :
>> On Jun 5, 2009, at 3:15 PM, Steven Matthew Anderson wrote:
>>
>>> Anyone know how to get p-values for the t-values from the
>>> coefficients produced in vglm?
>>> Attached is the code and output — see comment added to output to
>>> show where I need p-values
>>>
>>>
>>> + print(paste("********** Using VGAM function gamma2
>>> **********"))
>>> + modl2<-
>>> vglm(MidPoint~Count,gamma2,data=modl.subset,trace=TRUE,crit="c")
>>> + print(coef(modl2,matrix=TRUE))
>>> + print(summary(modl2))
>>>
>>>
>>> [1] "********** Using VGAM function gamma2 **********"
>>> VGLM linear loop 1 : coefficients =
>>> 0.408464609241, 3.255887520104, -0.000220585671
>>> VGLM linear loop 2 : coefficients =
>>> 2.34723239e-01, 1.28969691e+00, -4.52393778e-05
>>> VGLM linear loop 3 : coefficients =
>>> 2.19500481e-01, 1.92534895e+00, -3.02160949e-05
>>> VGLM linear loop 4 : coefficients =
>>> 2.19383151e-01, 2.26845910e+00, -3.00838664e-05
>>> VGLM linear loop 5 : coefficients =
>>> 2.19383045e-01, 2.34645688e+00, -3.00836087e-05
>>> VGLM linear loop 6 : coefficients =
>>> 2.19383045e-01, 2.34977070e+00, -3.00836082e-05
>>> VGLM linear loop 7 : coefficients =
>>> 2.19383045e-01, 2.34977637e+00, -3.00836082e-05
>>> VGLM linear loop 8 : coefficients =
>>> 2.19383045e-01, 2.34977637e+00, -3.00836082e-05
>>> log(mu) log(shape)
>>> (Intercept) 2.193830e-01 2.349776
>>> Count -3.008361e-05 0.000000
>>>
>>> Call:
>>> vglm(formula = MidPoint ~ Count, family = gamma2, data =
>>> modl.subset,
>>> trace = TRUE, crit = "c")
>>>
>>> Pearson Residuals:
>>> Min 1Q Median 3Q Max
>>> log(mu) -1.7037 -0.82997 0.072275 0.78520 1.72834
>>> log(shape) -2.5152 -0.32448 0.254698 0.58772 0.70678
>>>
>>>
>>> ######### NEED P-VALUES HERE #########
>>
>> Perhaps:
>>
>> dt(summary( modl2 )@coef3[ , 3], 1)
>
> ???
>
> 1) dt() is the density. didn't you mean pt() ?
Quite right.
>
> 2) I'd rather quote 2*min(pt(), 1-pt()) ("bilateral tests", y'know...)
> 3) The real hitch here is : what are the right DoF ? I do not think
> there is an easy answer to *this* one...
Which may be the reason that the summary method was not designed that
way?
>
>
> Emmanuel Charpentier
>
>>>
>>> Coefficients:
>>> Value Std. Error t value
>>> (Intercept):1 2.1938e-01 5.2679e-02 4.16455
>>> (Intercept):2 2.3498e+00 1.7541e-01 13.39574
>>> Count -3.0084e-05 8.9484e-05 -0.33619
>>>
>>> Number of linear predictors: 2
>>>
>>> Names of linear predictors: log(mu), log(shape)
>>>
>>> Dispersion Parameter for gamma2 family: 1
>>>
>>> Log-likelihood: -26.39268 on 123 degrees of freedom
>>>
>>> Number of Iterations: 8
>>>
>>>
>>> Steven Matthew Anderson
>>>
>>> Anderson Research, LLC
>>> Statistical Programming and Analysis
>>> SAS (R) Certified Professional
>>> AdAstra69 at mac.com
>
David Winsemius, MD
Heritage Laboratories
West Hartford, CT
More information about the R-help
mailing list