[R] t.test in a loop

Pushpike J Thilakarathne pushpike at med.kuleuven.be
Thu Jan 29 14:09:07 CET 2009


Hi, can u send a sample data set then I can setup it out.

Pushpike.

________________________________________________________________

O. Pushpike J. Thilakarathne, 
L-BioStat, Catholic University of Leuven.
U.Z. Sint-Rafaël (2nd Floor)
Kapucijnenvoer 35,   
B-3000 Leuven,            
BELGIUM.
Tel : + 32 (0) 16 33 68 87  
Fax: + 32 (0) 16 33 70 15  
URL [L-BioStat] : http://med.kuleuven.be/biostat/


-----Original Message-----
From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] On Behalf Of r-help-request at r-project.org
Sent: Thursday, January 29, 2009 12:00 PM
To: r-help at r-project.org
Subject: R-help Digest, Vol 71, Issue 29

Send R-help mailing list submissions to
	r-help at r-project.org

To subscribe or unsubscribe via the World Wide Web, visit
	https://stat.ethz.ch/mailman/listinfo/r-help
or, via email, send a message with subject or body 'help' to
	r-help-request at r-project.org

You can reach the person managing the list at
	r-help-owner at r-project.org

When replying, please edit your Subject line so it is more specific
than "Re: Contents of R-help digest..."


Today's Topics:

   1. t.test in a loop (Michael Pearmain)
   2. Re: evaluation revisited (Wacek Kusnierczyk)
   3. Re: evaluation revisited (Wacek Kusnierczyk)
   4. Re: t.test in a loop (Thomas Lumley)
   5. Re: for/if loop (Zhou Fang)
   6. putting match.call to good use (Harald Eikrem)
   7. Re: for/if loop (jim holtman)
   8. Re: evaluation revisited (Gabor Grothendieck)
   9. Re: evaluation revisited (Wacek Kusnierczyk)
  10. Character SNP data to binary MAF data (Hadassa Brunschwig)
  11. initial value in 'vmmin' is not finite (June Wong)
  12. putting match.call to good use (Harald Eikrem)
  13. Re: Mystery Error in midnightStandard (Ted Byers)
  14. Re: initial value in 'vmmin' is not finite (Prof Brian Ripley)
  15. plot slideshow (diego Diego)
  16. Re: Re : Need help on running Heckman Correction Estimation
      using R (Arne Henningsen)
  17. StepAIC with coxph (Michele Santacatterina)
  18. Merge two vectors into one. (patricia garc?a gonz?lez)
  19. Re: putting match.call to good use (Prof Brian Ripley)
  20. Re: Merge two vectors into one. (G?bor Cs?rdi)
  21. Re: Merge two vectors into one. (Dimitris Rizopoulos)
  22. Re: Merge two vectors into one. (patricia garc?a gonz?lez)
  23. Re: plot slideshow (stephen sefick)
  24. Re: Mystery Error in midnightStandard (Yohan Chalabi)
  25. Re: putting match.call to good use (Peter Dalgaard)
  26. Re: plot slideshow (David Winsemius)
  27. Re: putting match.call to good use (Dieter Menne)
  28. Re: OT: Adding verbatim R code text into LaTeX documents:
      texttt; verb or url? (JLucke at ria.buffalo.edu)
  29. Re: putting match.call to good use (Prof Brian Ripley)
  30. Grouping problem (venkata kirankumar)
  31. help with plot layout (mauede at alice.it)
  32. Newbie question about "grouping" (Rixon, John C.)
  33. Logical subset of the columns in a dataframe (Mark Na)
  34. Re: Grouping problem (David Winsemius)
  35. Re: Grouping problem (hadley wickham)
  36. Re: Newbie question about "grouping" (David Winsemius)
  37. Re: Newbie question about "grouping" (Thomas Lumley)
  38. Re: Newbie question about "grouping" (hadley wickham)
  39. Re: Logical subset of the columns in a dataframe
      (Prof Brian Ripley)
  40. Re: Mystery Error in midnightStandard (Ted Byers)
  41. Re: Logical subset of the columns in a dataframe (David Winsemius)
  42. Re: Mystery Error in midnightStandard (Yohan Chalabi)
  43. constrainOptim (June Wong)
  44. Re: constrainOptim (Ravi Varadhan)
  45. repeated measures design for GAM? (Strubbe Diederik)
  46. Repeated measures design for GAM? - corrected question...
      (Strubbe Diederik)
  47. Sweave problem with greek text (constantine)
  48. Re: StepAIC with coxph (Ravi Varadhan)
  49. Re: Repeated measures design for GAM? - corrected question...
      (Simon Wood)
  50. gls prediction using the correlation structure in nlme (Dr Carbon)
  51. [R-pkgs] AdMit version 1-01.01 (ARDIA David)
  52. Re: help with plot layout (Greg Snow)
  53. stack data sets (Nidhi Kohli)
  54. stack data sets (Nidhi Kohli)
  55. Re: constrainOptim (Ben Bolker)
  56. Saving plot into file without showing it (julien cuisinier)
  57. Get median of each column (Frank Zhang)
  58. R compilation (Attiglah, Mama)
  59. Re: Get median of each column (jim holtman)
  60. Re: Saving plot into file without showing it (jim holtman)
  61. Re: Get median of each column (Stephan Kolassa)
  62. Re: Saving plot into file without showing it (Stephan Kolassa)
  63. Re: Repeated measures design for GAM? - corrected question...
      (Strubbe Diederik)
  64. Re: Get median of each column (Rolf Turner)
  65. Re: Power analysis for MANOVA? (Stephan Kolassa)
  66. Re: Get median of each column (Stephan Kolassa)
  67. Neighborhood distance calculator (Kumudan)
  68. Cor(df,method = "kendall") (glenn)
  69. Re: R compilation (stephen sefick)
  70. Re: Neighborhood distance calculator (roger koenker)
  71.  Newbie Question About Histograms (pfc_ivan)
  72.  Help with normal distribution in random samples...
      (Sea Captain 1779)
  73.  Text data (Alice Lin)
  74. Re: Newbie Question About Histograms (Peter Alspach)
  75. Changing histogram stack in qplot (Jason Rupert)
  76. Re: Neighborhood distance calculator (Antonio, Fabio Di Narzo)
  77. Re: Text data (jim holtman)
  78. Re: Help with normal distribution in random samples...
      (Mike Lawrence)
  79. Re: Text data (Nutter, Benjamin)
  80. Re: Help with normal distribution in random samples...
      (Nordlund, Dan (DSHS/RDA))
  81. Re: Changing histogram stack in qplot (hadley wickham)
  82. Re: Memory issue? (Ubuntu Diego)
  83. Re: Newbie Question About Histograms (pfc_ivan)
  84. Re: rproxy.dll (Cl?ment D)
  85. Re: for/if loop (SnowManPaddington)
  86. Re: Newbie Question About Histograms (Eik Vettorazzi)
  87. Re: Using R in a web application (Gad Abraham)
  88. Re: Changing histogram stack in qplot (Jason Rupert)
  89.  Dynamic random effects model (Joseph Magagnoli)
  90. Re: [SPAM] - Re:  for/if loop - Bayesian Filter detected spam
      (davidr at rhotrading.com)
  91. questions about histogram (Wenxia Li)
  92. Re: [SPAM] - Re: for/if loop - Bayesian Filter detected spam
      (Henrik Bengtsson)
  93. Re: questions about histogram (jim holtman)
  94. Re: questions about histogram (Wenxia Li)
  95. Re: questions about histogram (Jorge Ivan Velez)
  96. Re: glm binomial loglog (NOT cloglog) link (Jorge Ivan Velez)
  97. Re: Faced Problems with RODBC package 1.2-5 and 1.2-4 for
      windows (Mark Wardle)
  98. Re: using Sweave with a master file that has several iputted
      .tex files (cameron.bracken)
  99.  standard error of logit parameters (Bomee Park)
  100.  Ignore text when reading data (beyar)
  101. Re: Ignore text when reading data (Remko Duursma)
  102. Re: Ignore text when reading data (Remko Duursma)
  103. Re: Ignore text when reading data (jim holtman)
  104. Re: Ignore text when reading data (beyar)
  105. Question about collapse/aggregate and avoidance of loops
      (Weiss, Bernd )
  106. Re :   standard error of logit parameters (justin bem)
  107. Re: t.test in a loop (Petr PIKAL)
  108. Re: Re :   standard error of logit parameters
      (markleeds at verizon.net)
  109. Odp: Question about collapse/aggregate and avoidance of
      loops (Petr PIKAL)
  110. Odp:  stack data sets (Petr PIKAL)
  111. Re: Character SNP data to binary MAF data (Hadassa Brunschwig)
  112. Re: Odp: Question about collapse/aggregate and avoidance of
      loops (Bernd Weiss)
  113. Re: Character SNP data to binary MAF data (Barry Rowlingson)
  114. Re: Character SNP data to binary MAF data (Thomas Lumley)
  115. Re: Character SNP data to binary MAF data (Patrick Aboyoun)
  116. Re: Question about collapse/aggregate and avoidance of loops
      (Patrick Burns)
  117. Re: Character SNP data to binary MAF data (Barry Rowlingson)
  118. Multiple tables (Gerit Offermann)
  119.  Text in a character vector to indicate "ifelse" argument
      (joe1985)
  120. Re: help with plot layout (Jim Lemon)
  121. Re: convergence problem gamm / lme (geert aarts)
  122. Odp: Text in a character vector to indicate "ifelse"
      argument (Petr PIKAL)
  123. Graphic device & graphics primitives (Sigbert Klinke)


----------------------------------------------------------------------

Message: 1
Date: Wed, 28 Jan 2009 11:25:22 +0000
From: Michael Pearmain <mpearmain at google.com>
Subject: [R] t.test in a loop
To: r-help at r-project.org
Message-ID:
	<2763e000901280325y4c8801dctc02a0aa48a9d45b6 at mail.gmail.com>
Content-Type: text/plain

Hi All,
I've been having a little trouble with creating a loop that will run a a
series of t.tests for inspection,
Below is the code i've tried, and some checks i've looked at.

I've used the get(paste()) idea as i was told previously that the use of the
eval should try and be avoided.


I've run a single syntax to check that my systax is correct and works
without any problems
> t.test(channel.data.train$News~channel.data.train$power)

Can anyone offer any advice?

Many thanks

Mike

> str(channel.data.train$power)
 num [1:9913] 0 0 0 0 0 0 0 0 0 0 ...
> summary(channel.data.train$power)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
 0.0000  0.0000  0.0000  0.2368  0.0000  1.0000
> names(channel.data.train)
 [1] "News"              "Entertainment"     "Communicate"
 [4] "Lifestyle"         "Games"             "Music"
 [7] "Money"             "Celebrity"         "Shopping"
[10] "Sport"             "Film"              "Travel"
[13] "Cars"              "Property"          "Chat"
[16] "Bet.Play.Win"      "config"            "exposed"
[19] "site"              "referrer"          "started"
[22] "last_viewed"       "num_views"         "secs_since_viewed"
[25] "register"          "secs.na"           "power"
[28] "tt"
> for(i in names(channel.data.train[,c(1:16)])){
+
t.test(get(paste("channel.data.train$",i,"~channel.data.train$power",sep="")))
+ }
Error in get(paste("channel.data.train$", i, "~channel.data.train$power",
 :
  variable "channel.data.train$News~channel.data.train$power" was not found



-- 
Michael Pearmain
Senior Analytics Research Specialist


Google UK Ltd
Belgrave House
76 Buckingham Palace Road
London SW1W 9TQ
United Kingdom
t +44 (0) 2032191684
mpearmain at google.com

If you received this communication by mistake, please don't forward it to
anyone else (it may contain confidential or privileged information), please
erase all copies of it, including all attachments, and please let the sender
know it went to the wrong person. Thanks.

	[[alternative HTML version deleted]]



------------------------------

Message: 2
Date: Wed, 28 Jan 2009 12:26:53 +0100
From: Wacek Kusnierczyk <Waclaw.Marcin.Kusnierczyk at idi.ntnu.no>
Subject: Re: [R] evaluation revisited
To: Gabor Grothendieck <ggrothendieck at gmail.com>
Cc: r-help at r-project.org
Message-ID: <498040FD.1010506 at idi.ntnu.no>
Content-Type: text/plain; charset=ISO-8859-1

Gabor Grothendieck wrote:
> The argument to eval.parent is evaluated before eval.parent
> ever sees it. 

really?  eval.parent is just a regular r function, a wrapper for eval
with envir=parent.frame().  the arguments to eval.parent are passed to
eval *unevaluated* (as promises), and are only evaluated when eval needs
them.  here's a modified eval.parent:

my.eval.parent = function(expr, n=1) {
    print('foo')
    p = parent.frame(n+1)
    eval(expr, p) }

my.eval.parent({print(1); 2})
# prints 'foo' before printing 1 and returning 2



>  Try issuing this command before you run your
> code:
>
> debug(eval.parent)
>
> and look at the value of the arguments as passed to eval.parent
> in the debugger.
>   

well, when you are in the debugger and look at the value of the
arguments you actually force the promises, so no wonder you see them
evaluated.  if you don't look at them, they're not evaluated:

trace(eval)
trace(parent.frame)
eval.parent({print(1);2})
# calling parent.frame
# calling eval
# printing 1 (after parent.frame and eval have been called)
# returning 2

vQ



------------------------------

Message: 3
Date: Wed, 28 Jan 2009 12:35:03 +0100
From: Wacek Kusnierczyk <Waclaw.Marcin.Kusnierczyk at idi.ntnu.no>
Subject: Re: [R] evaluation revisited
To: Gabor Grothendieck <ggrothendieck at gmail.com>
Cc: R help <R-help at stat.math.ethz.ch>
Message-ID: <498042E7.9050600 at idi.ntnu.no>
Content-Type: text/plain; charset=ISO-8859-1

Wacek Kusnierczyk wrote:
> Gabor Grothendieck wrote:
>   
>> The argument to eval.parent is evaluated before eval.parent
>> ever sees it. 
>>     
>
> really?  eval.parent is just a regular r function, a wrapper for eval
> with envir=parent.frame().  the arguments to eval.parent are passed to
> eval *unevaluated* (as promises), and are only evaluated when eval needs
> them.  

to be strict, the argument n to eval.parent is not further passed to
eval, and is evaluated before eval is called.  the above referred to the
'expr' argument to eval.parent.  one more example:

my.eval.parent = function(expr, n=1) {
    print('foo')
    p = parent.frame(n+1)
    eval(expr, p) }
trace(eval)
my.eval.parent({print('expr'); 1}, {print('n'); 1})
# "foo"
# "n"
# trace eval(expr, p)
# "expr"
# 1


vQ



------------------------------

Message: 4
Date: Wed, 28 Jan 2009 03:57:55 -0800 (PST)
From: Thomas Lumley <tlumley at u.washington.edu>
Subject: Re: [R] t.test in a loop
To: Michael Pearmain <mpearmain at google.com>
Cc: r-help at r-project.org
Message-ID:
	<Pine.LNX.4.43.0901280357550.12037 at hymn14.u.washington.edu>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed

On Wed, 28 Jan 2009, Michael Pearmain wrote:

> Hi All,
> I've been having a little trouble with creating a loop that will run a a
> series of t.tests for inspection,
> Below is the code i've tried, and some checks i've looked at.
>
> I've used the get(paste()) idea as i was told previously that the use of the
> eval should try and be avoided.
>
> I've run a single syntax to check that my systax is correct and works
> without any problems
>> t.test(channel.data.train$News~channel.data.train$power)
>
> Can anyone offer any advice?

There's the additional problem that if your code worked it would do 16 t-tests but only report the last one.

Assuming you want them printed

for(v in names(channel.data.train)[1:16]) {
   print(v)
   print(t.test(channel.data.train[[v]]~channel.data.train$power)
}

or
for(v in names(channel.data.train)[1:16]){
   test <- eval(bquote(.(v)~power, data=channel.data.train)
   print(eval(test))
}

This sort of use of eval is fairly harmless.

        -thomas
> Many thanks
>
> Mike
>
>> str(channel.data.train$power)
> num [1:9913] 0 0 0 0 0 0 0 0 0 0 ...
>> summary(channel.data.train$power)
>   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
> 0.0000  0.0000  0.0000  0.2368  0.0000  1.0000
>> names(channel.data.train)
> [1] "News"              "Entertainment"     "Communicate"
> [4] "Lifestyle"         "Games"             "Music"
> [7] "Money"             "Celebrity"         "Shopping"
> [10] "Sport"             "Film"              "Travel"
> [13] "Cars"              "Property"          "Chat"
> [16] "Bet.Play.Win"      "config"            "exposed"
> [19] "site"              "referrer"          "started"
> [22] "last_viewed"       "num_views"         "secs_since_viewed"
> [25] "register"          "secs.na"           "power"
> [28] "tt"
>> for(i in names(channel.data.train[,c(1:16)])){
> +
> t.test(get(paste("channel.data.train$",i,"~channel.data.train$power",sep="")))
> + }
> Error in get(paste("channel.data.train$", i, "~channel.data.train$power",
> :
>  variable "channel.data.train$News~channel.data.train$power" was not found
>
>
>
> --
> Michael Pearmain
> Senior Analytics Research Specialist
>
>
> Google UK Ltd
> Belgrave House
> 76 Buckingham Palace Road
> London SW1W 9TQ
> United Kingdom
> t +44 (0) 2032191684
> mpearmain at google.com
>
> If you received this communication by mistake, please don't forward it to
> anyone else (it may contain confidential or privileged information), please
> erase all copies of it, including all attachments, and please let the sender
> know it went to the wrong person. Thanks.
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

Thomas Lumley			Assoc. Professor, Biostatistics
tlumley at u.washington.edu	University of Washington, Seattle



------------------------------

Message: 5
Date: Wed, 28 Jan 2009 12:07:40 +0000
From: Zhou Fang <zhou.zfang at gmail.com>
Subject: Re: [R] for/if loop
To: r-help at r-project.org
Message-ID: <49804A8C.1030807 at gmail.com>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

What are you trying to do with
 > for (pp in 1:pp+1){
?

Also, note that 1:rr+1 and 1:(rr+1) mean different things.

Zhou



------------------------------

Message: 6
Date: Wed, 28 Jan 2009 13:34:55 +0100
From: "Harald Eikrem" <heikrem at c2i.net>
Subject: [R] putting match.call to good use
To: r-help at r-project.org
Message-ID: <web-124267531 at mailbe01.swip.net>
Content-Type: text/plain; charset="iso-8859-15"



------------------------------

Message: 7
Date: Wed, 28 Jan 2009 07:36:52 -0500
From: jim holtman <jholtman at gmail.com>
Subject: Re: [R] for/if loop
To: SnowManPaddington <wiwiana at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<644e1f320901280436w24c9f77chc9aeae47aeff5f4a at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Within the loops you are changing the loop variables (pp & rr).  Why
are you doing this?  THis might be causing your problem of what sounds
like an infinite loop.  You probably want to rethink what you are
trying to do in the loop.

On Wed, Jan 28, 2009 at 3:21 AM, SnowManPaddington <wiwiana at gmail.com> wrote:
>
> Hi, it's my first time to write a loop with R for my homework. This loop is
> part of the function. I wanna assign values for hll according to panel
> [ii,1]=pp. I didn't get any error message in this part. but then when I
> further calculate another stuff with hll, the function can't return. I think
> it must be some problem in my loop. Probably something stupid or easy. But I
> tried to look for previous posts in forum and read R language help. But none
> can help.. Thanks!
>
>
>
> for (ii in 1:100){
>        for (pp in 1:pp+1){
>                for (rr in 1:rr+1){
>                        if (panel[ii,1]!=pp)
>                        {
>                        hll(pp,1)=ColSums(lselb1(rr:ii-1,1))
>                        hll(pp,2)=ColSums(lselb2(rr:ii-1,1))
>                        rr=ii
>                        pp=pp+1
>                        }
>                        else
>                        {
>                        hll(pp,1)=ColSums(lselb1(rr:ii,1))
>                        hll(pp,2)=ColSums(lselb2(rr:ii,1))
>                        rr=ii
>                        pp=pp+1}
>                        }
>                        }}}
>
>
> in fact I have the corresponding Gauss code here. But I really don't know
> how to write such loop in R.
>
> rr=1;
> ii=1;
> pp=1;
> do until ii==n+1;
>        if pan[ii,1] ne pp;
>                hll[pp,1]=sumc(lselb1[rr:ii-1,1]);
>                hll[pp,2]=sumc(lselb2[rr:ii-1,1]);
>                rr=ii;
>                pp=pp+1;
>        endif;
>        if ii==n;
>                hll[pp,1]=sumc(lselb1[rr:ii,1]);
>                hll[pp,2]=sumc(lselb2[rr:ii,1]);
>                rr=ii;
>                pp=pp+1;
>        endif;
>        ii=ii+1;
> endo;
>
> --
> View this message in context: http://www.nabble.com/for-if-loop-tp21701496p21701496.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?



------------------------------

Message: 8
Date: Wed, 28 Jan 2009 08:04:03 -0500
From: Gabor Grothendieck <ggrothendieck at gmail.com>
Subject: Re: [R] evaluation revisited
To: Wacek Kusnierczyk <Waclaw.Marcin.Kusnierczyk at idi.ntnu.no>
Cc: r-help at r-project.org
Message-ID:
	<971536df0901280504pf93398fjbbc2153eed8f3264 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

On Wed, Jan 28, 2009 at 6:26 AM, Wacek Kusnierczyk
<Waclaw.Marcin.Kusnierczyk at idi.ntnu.no> wrote:
> Gabor Grothendieck wrote:
>> The argument to eval.parent is evaluated before eval.parent
>> ever sees it.
>
> really?  eval.parent is just a regular r function, a wrapper for eval
> with envir=parent.frame().  the arguments to eval.parent are passed to
> eval *unevaluated* (as promises), and are only evaluated when eval needs
> them.  here's a modified eval.parent:

Yes, you're right about the mechanism although quoting the
help page its nevertheless true that it:
"evaluates its first argument in the current scope before
passing it to the evaluator"



------------------------------

Message: 9
Date: Wed, 28 Jan 2009 14:29:02 +0100
From: Wacek Kusnierczyk <Waclaw.Marcin.Kusnierczyk at idi.ntnu.no>
Subject: Re: [R] evaluation revisited
To: Gabor Grothendieck <ggrothendieck at gmail.com>
Cc: r-help at r-project.org
Message-ID: <49805D9E.9000901 at idi.ntnu.no>
Content-Type: text/plain; charset=ISO-8859-1

Gabor Grothendieck wrote:
> On Wed, Jan 28, 2009 at 6:26 AM, Wacek Kusnierczyk
> <Waclaw.Marcin.Kusnierczyk at idi.ntnu.no> wrote:
>   
>> Gabor Grothendieck wrote:
>>     
>>> The argument to eval.parent is evaluated before eval.parent
>>> ever sees it.
>>>       
>> really?  eval.parent is just a regular r function, a wrapper for eval
>> with envir=parent.frame().  the arguments to eval.parent are passed to
>> eval *unevaluated* (as promises), and are only evaluated when eval needs
>> them.  here's a modified eval.parent:
>>     
>
> Yes, you're right about the mechanism although quoting the
> help page its nevertheless true that it:
> "evaluates its first argument in the current scope before
> passing it to the evaluator"
>   
... where 'current scope' is as clear as the sky over trondheim right
now [1], the issue being:

- is 'current scope' the scope in which eval (the above quote refers to
eval) is called (as it seems to be meant), or
- the scope *within* the call to eval (which would be intuitively
obvious, since when eval 'evaluates' it must have already been entered
and not yet left, so we're inside the eval-call scope).

another example of how quoting an r help page helps provided you already
know the answer. 
must admit that 'eval evaluates its argument before passing it to the
evaluator' is quite funny a quote;  so eval is able to evaluate without
an evaluator?  magic!

*what* is it that is true, quoting the help page?

vQ






[1]
http://www.yr.no/place/Norway/S%C3%B8r-Tr%C3%B8ndelag/Trondheim/Trondheim/



------------------------------

Message: 10
Date: Wed, 28 Jan 2009 15:36:03 +0200
From: Hadassa Brunschwig <hadassa.brunschwig at mail.huji.ac.il>
Subject: [R] Character SNP data to binary MAF data
To: r-help at r-project.org
Message-ID:
	<db80b30d0901280536v610e265w105cd60a133b03ef at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Hi

I am sure there is a function out there already but I couldn't find it.
I have SNP data, that is, a matrix which contains in each row two
characters (they are different in each row) and I would like to
convert this matrix to a binary one according to the minor allele
frequency. For non-geneticists: I want to have a binary matrix
for which in each row the 0 stands for the less frequent character
and 1 for the more frequent character.

Thanks for any suggestions.
Hadassa

-- 
Hadassa Brunschwig
PhD Student
Department of Statistics
The Hebrew University of Jerusalem
http://www.stat.huji.ac.il



------------------------------

Message: 11
Date: Wed, 28 Jan 2009 14:15:20 +0000
From: June Wong <neptune545 at hotmail.com>
Subject: [R] initial value in 'vmmin' is not finite
To: <r-help at r-project.org>
Message-ID: <BAY136-W36F4FAD45683269D9C3DBC8AC80 at phx.gbl>
Content-Type: text/plain


Dear r helpers

I run the following code for nested logit and got a message that 

Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
What does this mean? and how can I correct it?

Thank you
June

> yogurt = read.table("yogurtnp.csv", header=F,sep=",")> attach(yogurt)> dim(yogurt)[1] 12784    25> choice = yogurt[,2:5]> price=yogurt[,14:17]> feature=yogurt[,6:9]> n = nrow(yogurt)> constant = rep(1,each=n)> yop=cbind(constant,feature[,1],price[,1])> dan=cbind(constant,feature[,2],price[,2])> hil=cbind(constant,feature[,3],price[,3])> wt=cbind(feature[,4],price[,4])> > fr <- function(x) { + x1 = x[1]+ x2 = x[2]+ x3 = x[3]+ x4 = x[4]+ x5 = x[5]+ x6 = x[6]+ x7 = x[7]+ con1 = rbind(x[1],x[5],x[6])+ con2 = rbind(x[2],x[5],x[6])+ con3 = rbind(x[3],x[5],x[6])+ con4 = rbind(x[5],x[6])+ rho=exp(x[7])/(1+exp(x[7]))+ ey = exp((yop%*%con1)/rho)+ ed = exp((dan%*%con2)/rho)+ eh = exp((hil%*%con3)/rho)+ ew = exp((wt%*%con4)/rho)+ ev = ey+ed+eh+ew+ den=(ey+ed+eh+ew)+ iv = rho*log(den)+ pp=exp(x[4]+iv)/(1+exp(x[4]+iv))+ pr1 =pp* ey/den+ pr2 =pp* ed/den+ pr3 =pp* eh/den+ pr4 =pp* ew/den+ pnp=1/(1+exp(x[4]+iv))+ likelihood = (pnp*yogurt[,1])+(pr1*yogurt[,2])+(pr2*yogurt[,3])+(pr3*yogurt[,!
 4])+(pr4*yogurt[,4])+ lsum = log(likelihood)+ return(-colSums(lsum))+ }> p = optim(c(0,0,0,0,0.1,-2,-0.2),fr, hessian = TRUE, method = "BFGS")Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite

_________________________________________________________________



	[[alternative HTML version deleted]]



------------------------------

Message: 12
Date: Wed, 28 Jan 2009 15:29:44 +0100
From: Harald Eikrem <heikrem at c2i.net>
Subject: [R] putting match.call to good use
To: r-help at r-project.org
Message-ID: <49806BD8.1090804 at c2i.net>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

( I just became aware the mailer enforces html bodies, as such removed 
by the list handler.  Sorry about that.  My message was )

I have this function

slm <- function(fun=lm, ...) {
   #ilm <- eval(match.call()[-1]);  # no way
   ilm <- eval(parse(text=sub("^list", deparse(substitute(fun)), 
deparse(substitute(...())))));
   ...

The latter actually does the trick, but recognising how some gurus hate 
parse, I would like to know if this can anyhow be done with match.call, 
or any other reasonable solution.

The issue here is that lm (and likewise glm, bayesglm, etc.) returns the 
function call, which needs to show up as the original args to slm of course.

   ~~harald e



------------------------------

Message: 13
Date: Wed, 28 Jan 2009 09:30:58 -0500
From: Ted Byers <r.ted.byers at gmail.com>
Subject: Re: [R] Mystery Error in midnightStandard
To: Yohan Chalabi <chalabi at phys.ethz.ch>
Cc: R-help Forum <r-help at r-project.org>
Message-ID:
	<4f1819890901280630l24b48a9ah66273c6425620fad at mail.gmail.com>
Content-Type: text/plain

Hi Yohan,  Thanks.

On Wed, Jan 28, 2009 at 4:57 AM, Yohan Chalabi <chalabi at phys.ethz.ch> wrote:

> >>>> "TB" == Ted Byers <r.ted.byers at gmail.com>
> >>>> on Tue, 27 Jan 2009 16:00:27 -0500
>
>   TB> I wasn't even aware I was using midnightStandard.  You won't
>   TB> find it in my
>   TB> script.
>   TB>
>   TB> Here is the relevant loop:
>   TB>
>   TB> date1 = timeDate(charvec = Sys.Date(), format = %Y-%m-%d)
>   TB> date1
>   TB> dow = 3;
>   TB> for (i in 1:length(V4) ) {
>   TB> x = read.csv(as.character(V4[[i]]), header = FALSE,
>   TB> na.strings=);
>   TB> y = x[,1];
>   TB> year = V2[[i]];
>   TB> week = V3[[i]];
>   TB> dtstr = sprintf(%i-%i-%i,year,week,dow);
>   TB> date2 = timeDate(dtstr, format = %Y-%U-%w);
>   TB> resultsdataframe[[i]] <- difftimeDate(date1,date2,units =
>   TB> weeks);
>   TB> fp = fitdistr(y,exponential);
>   TB> print(c(V1[[i]],V2[[i]],V3[[i]],fp,fp));
>   TB> print(c(year,week,date2,resultsdataframe[[i]]));
>   TB> resultsdataframe[[i]] <- fp;
>   TB> resultsdataframe[[i]] <- fp;
>   TB> }
>   TB>
>   TB> It fails with a little more than 100 records left in V4.
>   TB>
>   TB> The full error message is:
>   TB>
>   TB> Error in midnightStandard(charvec, format) :
>   TB> 'charvec' has non-NA entries of different number of characters
>
> timeDate() uses the midnight standard. The function 'midnightStandard'
> assumes that all entries in 'charvec' have the same 'format'. Can you
> please check if this is the case?
>

It is certain that all entries have the same format, but I'm starting to
think that the error message is something of a red herring.  Consider this:

> year = 2009
> week = 0
> day = 3
> datestr = sprintf("%i-%i-%i",year,week,day);datestr
[1] "2009-0-3"
> date1 = timeDate(datestr, format = "%Y-%U-%w");
> date1
GMT
[1] [NA]
> day = 4
> datestr = sprintf("%i-%i-%i",year,week,day);datestr
[1] "2009-0-4"
> date1 = timeDate(datestr, format = "%Y-%U-%w");
> date1
GMT
[1] [2009-01-01]
>
> datestr = sprintf("%i-%i-%i",year,week,3);datestr
[1] "2009-0-3"
> date2 = timeDate(datestr, format = "%Y-%U-%w");date2
GMT
[1] [NA]
> difftimeDate(date2,date1, units = "weeks")
Error in midnightStandard(charvec, format) :
  'charvec' has non-NA entries of different number of characters
In addition: Warning messages:
1: In min(x) : no non-missing arguments to min; returning Inf
2: In max(x) : no non-missing arguments to max; returning -Inf



The first values for year, week and day are the values on which my loop
dies.  It returns 'NA' here.  It seems clear that it is returning NA because
the date that data corresponds to is 2008-12-31.

The error is being produced by difftimeDate rather than timeDate (as shown
by the above session).  But that represents a flaw in the function design.
It should fail when taking the elapsed time between a null and the present,
but if I wrote such a function, I'd have it return null (perhaps with a
warning) rather than just die.

A bigger issue is that timeDate ought never give null here (which is what I
assume 'NA' means), since all the data comes from transaction data with real
dates, so the elapsed time, measured in weeks, ought to always be a valid
real number that is positive semidefinite.  I have not yet come to any
conclusions as to how it ought to behave (whether to return new years day,
along with a warning, or to return the date requested by reinvoking itself
with the year and week adjusted so a valid date is returned).

On a practical side, how would I test date2 to see if it is null, so I can
give it a sensible default value?

A more troubling thought is that with this handling of dates in this
combination of SQL (my group by clause uses
YEAR(transaction_date),WEEK(transaction_date)) to get the data and R to
process it, the week containing new years day will ALWAYS be split in two at
the first second of the new year. I'm going to have to either figure out a
way to correct this, or ignore it (as it doesn't actually make things wrong,
but rather it splits a sample into two unequal parts).

Thoughts?

Thanks

Ted

	[[alternative HTML version deleted]]



------------------------------

Message: 14
Date: Wed, 28 Jan 2009 14:35:11 +0000 (GMT)
From: Prof Brian Ripley <ripley at stats.ox.ac.uk>
Subject: Re: [R] initial value in 'vmmin' is not finite
To: June Wong <neptune545 at hotmail.com>
Cc: r-help at r-project.org
Message-ID: <alpine.OSX.1.00.0901281432210.97827 at tystie.local>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed

On Wed, 28 Jan 2009, June Wong wrote:

>
> Dear r helpers
>
> I run the following code for nested logit and got a message that
>
> Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
> What does this mean? and how can I correct it?

It means that your function at your starting values is evaluating to a 
non-finite value (+/-Inf, NA, NaN).

Your example is unreadable, and we don't have the file so cannot help 
you debug this.

>
> Thank you
> June
>
>> yogurt = read.table("yogurtnp.csv", header=F,sep=",")> attach(yogurt)> dim(yogurt)[1] 12784    25> choice = yogurt[,2:5]> price=yogurt[,14:17]> feature=yogurt[,6:9]> n = nrow(yogurt)> constant = rep(1,each=n)> yop=cbind(constant,feature[,1],price[,1])> dan=cbind(constant,feature[,2],price[,2])> hil=cbind(constant,feature[,3],price[,3])> wt=cbind(feature[,4],price[,4])> > fr <- function(x) { + x1 = x[1]+ x2 = x[2]+ x3 = x[3]+ x4 = x[4]+ x5 = x[5]+ x6 = x[6]+ x7 = x[7]+ con1 = rbind(x[1],x[5],x[6])+ con2 = rbind(x[2],x[5],x[6])+ con3 = rbind(x[3],x[5],x[6])+ con4 = rbind(x[5],x[6])+ rho=exp(x[7])/(1+exp(x[7]))+ ey = exp((yop%*%con1)/rho)+ ed = exp((dan%*%con2)/rho)+ eh = exp((hil%*%con3)/rho)+ ew = exp((wt%*%con4)/rho)+ ev = ey+ed+eh+ew+ den=(ey+ed+eh+ew)+ iv = rho*log(den)+ pp=exp(x[4]+iv)/(1+exp(x[4]+iv))+ pr1 =pp* ey/den+ pr2 =pp* ed/den+ pr3 =pp* eh/den+ pr4 =pp* ew/den+ pnp=1/(1+exp(x[4]+iv))+ likelihood = (pnp*yogurt[,1])+(pr1*yogurt[,2])+(pr2*yogurt[,3])+(pr3*yogurt[!
 ,!
> 4])+(pr4*yogurt[,4])+ lsum = log(likelihood)+ return(-colSums(lsum))+ }> p = optim(c(0,0,0,0,0.1,-2,-0.2),fr, hessian = TRUE, method = "BFGS")Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
>
> _________________________________________________________________
>
>
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

-- 
Brian D. Ripley,                  ripley at stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595



------------------------------

Message: 15
Date: Wed, 28 Jan 2009 11:44:31 -0300
From: diego Diego <dhabbyc at gmail.com>
Subject: [R] plot slideshow
To: r-help at r-project.org
Message-ID:
	<e76ec2580901280644q24a8fe9cm2fdd3b919996f413 at mail.gmail.com>
Content-Type: text/plain

Dear R experts:
 I've seen that it's possible to make a sort of "slideshow" with several
R-plots (each slide is activated by a click on the mouse). How can I put
this on a R-script???


Regards.

D.

	[[alternative HTML version deleted]]



------------------------------

Message: 16
Date: Wed, 28 Jan 2009 09:48:06 -0500
From: Arne Henningsen <arne.henningsen at googlemail.com>
Subject: Re: [R] Re : Need help on running Heckman Correction
	Estimation	using R
To: r-help at r-project.org, justin bem <justin_bem at yahoo.fr>,	Kishore
	<gladikishore at gmail.com>
Cc: Ott Toomet <ott.toomet at ut.ee>
Message-ID: <200901280948.06591.arne.henningsen at googlemail.com>
Content-Type: text/plain;  charset="iso-8859-15"

Hi Kishore and Justin,

The sample selection stuff has been separated from the micEcon package about 
one year ago. It is available in the sampleSelection package [1,2,3] now. The 
sample selection package is thoroughly described in a (freely available) paper 
published in the Journal of Statistical Software [4]. We recommend using the 
"selection" command rather than the "heckit" command, because the former can 
be used to estimate the model not only by the two-step method but also by ML.

[1] http://www.sampleselection.org/
[2] http://r-forge.r-project.org/projects/sampleselection/
[3] http://cran.r-project.org/web/packages/sampleSelection/index.html
[4] http://www.jstatsoft.org/v27/i07

Best wishes,
Arne


On Tuesday 27 January 2009 06:02:46, justin bem wrote:
> See the micEcon package. there is and heckit function
> ??Justin BEM
> BP 1917 Yaound??
> T??l (237) 99597295
> (237) 22040246
>
>
>
>
> ________________________________
> De : Kishore <gladikishore at gmail.com>
> ?? : r-help at r-project.org; r-help at stat.math.ethz.ch
> Envoy?? le : Mardi, 27 Janvier 2009, 11h54mn 00s
> Objet??: [R] Need help on running Heckman Correction Estimation using R
>
> Team,
>
> I am trying to resolve the self-selection bias of a sample in an experiment
> and would like to run the Heckman Correction Estimation using R.?? Can
> someone help me with the R-Code... I tried searching for the discussion,
> but not successful. Thanks in advance,
>
> Best,
>
> Kishore/..
> http://kaykayatisb.blogspot.com
>
> ?????? [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html and provide commented, minimal,
> self-contained, reproducible code.
>
>
>
>
> 	[[alternative HTML version deleted]]
-- 
Arne Henningsen
http://www.arne-henningsen.name/



------------------------------

Message: 17
Date: Wed, 28 Jan 2009 15:50:11 +0100
From: Michele Santacatterina <miksanta at gmail.com>
Subject: [R] StepAIC with coxph
To: R-help at r-project.org
Message-ID:
	<1f0555cf0901280650q4dae0443mca01c02e6d4c0582 at mail.gmail.com>
Content-Type: text/plain

Hi,

i'm trying to apply StepAIC with coxph...but i have the same error:

stepAIC(fitBMT)
Start:  AIC=327.77
Surv(TEMPO,morto==1) ˜ VOD + SESSO + ETA + ........

Error in dropterm.default(fit,scope$drop, scale=scale,trace=max(0,  :
number of rows in use has changed: remove missing values?

anybody know this error??

Thanks.

Michele

	[[alternative HTML version deleted]]



------------------------------

Message: 18
Date: Wed, 28 Jan 2009 14:54:19 +0000
From: patricia garc?a gonz?lez <kurtney_84 at hotmail.com>
Subject: [R] Merge two vectors into one.
To: <r-help at r-project.org>
Message-ID: <BAY106-W17030B9E71F42E0796554CF6C80 at phx.gbl>
Content-Type: text/plain


Hi all, 

I have two vectors like this:


      x <- c( "Y", "H", NA,  NA )

    y <- c( NA,  "H", NA,  "B" )

And would like to make one vector with the common elements, and the element available only in one of the vectors.


      res <- c( "Y",  "H", NA,  "B" )


Thanks, 

Patricia



> From: neptune545 at hotmail.com
> To: r-help at r-project.org
> Date: Wed, 28 Jan 2009 14:15:20 +0000
> Subject: [R] initial value in 'vmmin' is not finite
> 
> 
> Dear r helpers
>  
> I run the following code for nested logit and got a message that 
>  
> Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
> What does this mean? and how can I correct it?
>  
> Thank you
> June
>  
> > yogurt = read.table("yogurtnp.csv", header=F,sep=",")> attach(yogurt)> dim(yogurt)[1] 12784    25> choice = yogurt[,2:5]> price=yogurt[,14:17]> feature=yogurt[,6:9]> n = nrow(yogurt)> constant = rep(1,each=n)> yop=cbind(constant,feature[,1],price[,1])> dan=cbind(constant,feature[,2],price[,2])> hil=cbind(constant,feature[,3],price[,3])> wt=cbind(feature[,4],price[,4])> > fr <- function(x) { + x1 = x[1]+ x2 = x[2]+ x3 = x[3]+ x4 = x[4]+ x5 = x[5]+ x6 = x[6]+ x7 = x[7]+ con1 = rbind(x[1],x[5],x[6])+ con2 = rbind(x[2],x[5],x[6])+ con3 = rbind(x[3],x[5],x[6])+ con4 = rbind(x[5],x[6])+ rho=exp(x[7])/(1+exp(x[7]))+ ey = exp((yop%*%con1)/rho)+ ed = exp((dan%*%con2)/rho)+ eh = exp((hil%*%con3)/rho)+ ew = exp((wt%*%con4)/rho)+ ev = ey+ed+eh+ew+ den=(ey+ed+eh+ew)+ iv = rho*log(den)+ pp=exp(x[4]+iv)/(1+exp(x[4]+iv))+ pr1 =pp* ey/den+ pr2 =pp* ed/den+ pr3 =pp* eh/den+ pr4 =pp* ew/den+ pnp=1/(1+exp(x[4]+iv))+ likelihood = (pnp*yogurt[,1])+(pr1*yogurt[,2])+(pr2*yogurt[,3])+(pr3*yogurt!
 [,!
>  4])+(pr4*yogurt[,4])+ lsum = log(likelihood)+ return(-colSums(lsum))+ }> p = optim(c(0,0,0,0,0.1,-2,-0.2),fr, hessian = TRUE, method = "BFGS")Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
> 
> _________________________________________________________________
> 
> 
> 
> 	[[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

_________________________________________________________________


	[[alternative HTML version deleted]]



------------------------------

Message: 19
Date: Wed, 28 Jan 2009 15:00:42 +0000 (GMT)
From: Prof Brian Ripley <ripley at stats.ox.ac.uk>
Subject: Re: [R] putting match.call to good use
To: Harald Eikrem <heikrem at c2i.net>
Cc: r-help at r-project.org
Message-ID: <alpine.OSX.1.00.0901281452150.97868 at tystie.local>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed

On Wed, 28 Jan 2009, Harald Eikrem wrote:

> ( I just became aware the mailer enforces html bodies, as such removed by the 
> list handler.  Sorry about that.  My message was )
>
> I have this function
>
> slm <- function(fun=lm, ...) {
>  #ilm <- eval(match.call()[-1]);  # no way
>  ilm <- eval(parse(text=sub("^list", deparse(substitute(fun)), 
> deparse(substitute(...())))));
>  ...
>
> The latter actually does the trick, but recognising how some gurus hate 
> parse, I would like to know if this can anyhow be done with match.call, or 
> any other reasonable solution.
>
> The issue here is that lm (and likewise glm, bayesglm, etc.) returns the 
> function call, which needs to show up as the original args to slm of course.

The way to do this is eval(substitute()).  E.g. from the new Rd2HTML

         Rd <- eval(substitute(parse_Rd(f, encoding = enc),
                              list(f = Rd,enc = encoding)))

-- 
Brian D. Ripley,                  ripley at stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595



------------------------------

Message: 20
Date: Wed, 28 Jan 2009 16:01:11 +0100
From: G?bor Cs?rdi <csardi at rmki.kfki.hu>
Subject: Re: [R] Merge two vectors into one.
To: patricia garc?a gonz?lez <kurtney_84 at hotmail.com>
Cc: r-help at r-project.org
Message-ID:
	<d70c15d40901280701t7ab41b20rf14de15ef41105e8 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Is position important? The vectors always have the same length? They
always have the same entry if both are not NA?

If yes, yes and yes, then

res <- ifelse( is.na(x), y, x)

does what you want. Otherwise please explain better what you want.

Gabor

On Wed, Jan 28, 2009 at 3:54 PM, patricia garc?a gonz?lez
<kurtney_84 at hotmail.com> wrote:
>
> Hi all,
>
> I have two vectors like this:
>
>
>      x <- c( "Y", "H", NA,  NA )
>
>    y <- c( NA,  "H", NA,  "B" )
>
> And would like to make one vector with the common elements, and the element available only in one of the vectors.
>
>
>      res <- c( "Y",  "H", NA,  "B" )
>
>
> Thanks,
>
> Patricia
>

-- 
Gabor Csardi <Gabor.Csardi at unil.ch>     UNIL DGM



------------------------------

Message: 21
Date: Wed, 28 Jan 2009 16:01:08 +0100
From: Dimitris Rizopoulos <d.rizopoulos at erasmusmc.nl>
Subject: Re: [R] Merge two vectors into one.
To: patricia garc?a gonz?lez  <kurtney_84 at hotmail.com>
Cc: r-help at r-project.org
Message-ID: <49807334.2070501 at erasmusmc.nl>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

you could start by something like the following:

x <- c("Y", "H", NA, NA)
y <- c(NA, "H", NA, "B")

ifelse(is.na(x), y, x)


I hope it helps.

Best,
Dimitris


patricia garc?a gonz?lez wrote:
> Hi all, 
> 
> I have two vectors like this:
> 
> 
>       x <- c( "Y", "H", NA,  NA )
> 
>     y <- c( NA,  "H", NA,  "B" )
> 
> And would like to make one vector with the common elements, and the element available only in one of the vectors.
> 
> 
>       res <- c( "Y",  "H", NA,  "B" )
> 
> 
> Thanks, 
> 
> Patricia
> 
> 
> 
>> From: neptune545 at hotmail.com
>> To: r-help at r-project.org
>> Date: Wed, 28 Jan 2009 14:15:20 +0000
>> Subject: [R] initial value in 'vmmin' is not finite
>>
>>
>> Dear r helpers
>>  
>> I run the following code for nested logit and got a message that 
>>  
>> Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
>> What does this mean? and how can I correct it?
>>  
>> Thank you
>> June
>>  
>>> yogurt = read.table("yogurtnp.csv", header=F,sep=",")> attach(yogurt)> dim(yogurt)[1] 12784    25> choice = yogurt[,2:5]> price=yogurt[,14:17]> feature=yogurt[,6:9]> n = nrow(yogurt)> constant = rep(1,each=n)> yop=cbind(constant,feature[,1],price[,1])> dan=cbind(constant,feature[,2],price[,2])> hil=cbind(constant,feature[,3],price[,3])> wt=cbind(feature[,4],price[,4])> > fr <- function(x) { + x1 = x[1]+ x2 = x[2]+ x3 = x[3]+ x4 = x[4]+ x5 = x[5]+ x6 = x[6]+ x7 = x[7]+ con1 = rbind(x[1],x[5],x[6])+ con2 = rbind(x[2],x[5],x[6])+ con3 = rbind(x[3],x[5],x[6])+ con4 = rbind(x[5],x[6])+ rho=exp(x[7])/(1+exp(x[7]))+ ey = exp((yop%*%con1)/rho)+ ed = exp((dan%*%con2)/rho)+ eh = exp((hil%*%con3)/rho)+ ew = exp((wt%*%con4)/rho)+ ev = ey+ed+eh+ew+ den=(ey+ed+eh+ew)+ iv = rho*log(den)+ pp=exp(x[4]+iv)/(1+exp(x[4]+iv))+ pr1 =pp* ey/den+ pr2 =pp* ed/den+ pr3 =pp* eh/den+ pr4 =pp* ew/den+ pnp=1/(1+exp(x[4]+iv))+ likelihood = (pnp*yogurt[,1])+(pr1*yogurt[,2])+(pr2*yogurt[,3])+(pr3*yogurt
!
>  [,!
>>  4])+(pr4*yogurt[,4])+ lsum = log(likelihood)+ return(-colSums(lsum))+ }> p = optim(c(0,0,0,0,0.1,-2,-0.2),fr, hessian = TRUE, method = "BFGS")Error in optim(c(0, 0, 0, 0, 0.1, -2, -0.2), fr, hessian = TRUE, method = "BFGS") :   initial value in 'vmmin' is not finite
>>
>> _________________________________________________________________
>>
>>
>>
>> 	[[alternative HTML version deleted]]
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
> 
> _________________________________________________________________
> 
> 
> 	[[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
> 

-- 
Dimitris Rizopoulos
Assistant Professor
Department of Biostatistics
Erasmus Medical Center

Address: PO Box 2040, 3000 CA Rotterdam, the Netherlands
Tel: +31/(0)10/7043478
Fax: +31/(0)10/7043014



------------------------------

Message: 22
Date: Wed, 28 Jan 2009 15:04:14 +0000
From: patricia garc?a gonz?lez <kurtney_84 at hotmail.com>
Subject: Re: [R] Merge two vectors into one.
To: <csardi at rmki.kfki.hu>
Cc: r-help at r-project.org
Message-ID: <BAY106-W11D32EFEDD34EB887498B4F6C80 at phx.gbl>
Content-Type: text/plain


Hi, 



Sorry, the answers are yes yes yes. And thank you for your idea it works perfectly.


Regards



Patricia



> Date: Wed, 28 Jan 2009 16:01:11 +0100
> Subject: Re: [R] Merge two vectors into one.
> From: csardi at rmki.kfki.hu
> To: kurtney_84 at hotmail.com
> CC: r-help at r-project.org
> 
> Is position important? The vectors always have the same length? They
> always have the same entry if both are not NA?
> 
> If yes, yes and yes, then
> 
> res <- ifelse( is.na(x), y, x)
> 
> does what you want. Otherwise please explain better what you want.
> 
> Gabor
> 
> On Wed, Jan 28, 2009 at 3:54 PM, patricia garcía gonzález
> <kurtney_84 at hotmail.com> wrote:
> >
> > Hi all,
> >
> > I have two vectors like this:
> >
> >
> >      x <- c( "Y", "H", NA,  NA )
> >
> >    y <- c( NA,  "H", NA,  "B" )
> >
> > And would like to make one vector with the common elements, and the element available only in one of the vectors.
> >
> >
> >      res <- c( "Y",  "H", NA,  "B" )
> >
> >
> > Thanks,
> >
> > Patricia
> >
> 
> -- 
> Gabor Csardi <Gabor.Csardi at unil.ch>     UNIL DGM

_________________________________________________________________


	[[alternative HTML version deleted]]



------------------------------

Message: 23
Date: Wed, 28 Jan 2009 10:10:40 -0500
From: stephen sefick <ssefick at gmail.com>
Subject: Re: [R] plot slideshow
To: diego Diego <dhabbyc at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<c502a9e10901280710t40ddac82n137de355fe620613 at mail.gmail.com>
Content-Type: text/plain; charset=UTF-8

I know you probably want to do this in R, but you could do this in
power point or the openoffice variant rather easily.

Stephen

On Wed, Jan 28, 2009 at 9:44 AM, diego Diego <dhabbyc at gmail.com> wrote:
> Dear R experts:
>  I've seen that it's possible to make a sort of "slideshow" with several
> R-plots (each slide is activated by a click on the mouse). How can I put
> this on a R-script???
>
>
> Regards.
>
> D.
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Stephen Sefick

Let's not spend our time and resources thinking about things that are
so little or so large that all they really do for us is puff us up and
make us feel like gods.  We are mammals, and have not exhausted the
annoying little problems of being mammals.

								-K. Mullis



------------------------------

Message: 24
Date: Wed, 28 Jan 2009 16:28:28 +0100
From: Yohan Chalabi <chalabi at phys.ethz.ch>
Subject: Re: [R] Mystery Error in midnightStandard
To: Ted Byers <r.ted.byers at gmail.com>
Cc: R-help Forum <r-help at r-project.org>
Message-ID: <20090128162828.36d5648f at mimi>
Content-Type: text/plain; charset=US-ASCII

>>>> "TB" == Ted Byers <r.ted.byers at gmail.com>
>>>> on Wed, 28 Jan 2009 09:30:58 -0500

   TB> It is certain that all entries have the same format, but I'm
   TB> starting to
   TB> think that the error message is something of a red herring.
   TB> Consider this:
   TB>
   TB> > year = 2009
   TB> > week = 0
   TB> > day = 3
   TB> > datestr = sprintf(%i-%i-%i,year,week,day);datestr
   TB> [1] 2009-0-3
   TB> > date1 = timeDate(datestr, format = %Y-%U-%w);
   TB> > date1
   TB> GMT
   TB> [1] [NA]
   TB> > day = 4
   TB> > datestr = sprintf(%i-%i-%i,year,week,day);datestr
   TB> [1] 2009-0-4
   TB> > date1 = timeDate(datestr, format = %Y-%U-%w);
   TB> > date1
   TB> GMT
   TB> [1] [2009-01-01]
   TB> >
   TB> > datestr = sprintf(%i-%i-%i,year,week,3);datestr
   TB> [1] 2009-0-3
   TB> > date2 = timeDate(datestr, format = %Y-%U-%w);date2
   TB> GMT
   TB> [1] [NA]
   TB> > difftimeDate(date2,date1, units = weeks)
   TB> Error in midnightStandard(charvec, format) :
   TB> 'charvec' has non-NA entries of different number of characters
   TB> In addition: Warning messages:
   TB> 1: In min(x) : no non-missing arguments to min; returning Inf
   TB> 2: In max(x) : no non-missing arguments to max; returning -Inf
   TB>
   TB>
   TB>
   TB> The first values for year, week and day are the values on
   TB> which my loop
   TB> dies.  It returns 'NA' here.  It seems clear that it is
   TB> returning NA because
   TB> the date that data corresponds to is 2008-12-31.
   TB>
   TB> The error is being produced by difftimeDate rather than timeDate
   TB> (as shown
   TB> by the above session).  But that represents a flaw in the
   TB> function design.

This is not a flaw in timeDate. it behaves the same way as
'as.POSIXct' 

strptime(datestr, format = "%Y-%U-%w")

Instead of claiming that there is a flaw in the function you could have
suggested an 'is.na' method for 'timeDate'.

I will add an 'is.na' method in the dev version of 'timeDate'.

regards,
Yohan 

   TB> It should fail when taking the elapsed time between a null
   TB> and the present,
   TB> but if I wrote such a function, I'd have it return null
   TB> (perhaps with a
   TB> warning) rather than just die.
   TB>
   TB> A bigger issue is that timeDate ought never give null here
   TB> (which is what I
   TB> assume 'NA' means), since all the data comes from transaction
   TB> data with real
   TB> dates, so the elapsed time, measured in weeks, ought to always
   TB> be a valid
   TB> real number that is positive semidefinite.  I have not yet
   TB> come to any
   TB> conclusions as to how it ought to behave (whether to return
   TB> new years day,
   TB> along with a warning, or to return the date requested by
   TB> reinvoking itself
   TB> with the year and week adjusted so a valid date is returned).
   TB>
   TB> On a practical side, how would I test date2 to see if it is
   TB> null, so I can
   TB> give it a sensible default value?
   TB>
   TB> A more troubling thought is that with this handling of dates
   TB> in this
   TB> combination of SQL (my group by clause uses
   TB> YEAR(transaction_date),WEEK(transaction_date)) to get the data
   TB> and R to
   TB> process it, the week containing new years day will ALWAYS be
   TB> split in two at
   TB> the first second of the new year. I'm going to have to either
   TB> figure out a
   TB> way to correct this, or ignore it (as it doesn't actually make
   TB> things wrong,
   TB> but rather it splits a sample into two unequal parts).




-- 
PhD student
Swiss Federal Institute of Technology
Zurich

www.ethz.ch



------------------------------

Message: 25
Date: Wed, 28 Jan 2009 16:29:37 +0100
From: Peter Dalgaard <P.Dalgaard at biostat.ku.dk>
Subject: Re: [R] putting match.call to good use
To: Prof Brian Ripley <ripley at stats.ox.ac.uk>
Cc: r-help at r-project.org, Harald Eikrem <heikrem at c2i.net>
Message-ID: <498079E1.4020109 at biostat.ku.dk>
Content-Type: text/plain; charset=UTF-8

Prof Brian Ripley wrote:
> On Wed, 28 Jan 2009, Harald Eikrem wrote:
> 
>> ( I just became aware the mailer enforces html bodies, as such removed
>> by the list handler.  Sorry about that.  My message was )
>>
>> I have this function
>>
>> slm <- function(fun=lm, ...) {
>>  #ilm <- eval(match.call()[-1]);  # no way
>>  ilm <- eval(parse(text=sub("^list", deparse(substitute(fun)),
>> deparse(substitute(...())))));
>>  ...
>>
>> The latter actually does the trick, but recognising how some gurus
>> hate parse, I would like to know if this can anyhow be done with
>> match.call, or any other reasonable solution.
>>
>> The issue here is that lm (and likewise glm, bayesglm, etc.) returns
>> the function call, which needs to show up as the original args to slm
>> of course.
> 
> The way to do this is eval(substitute()).  E.g. from the new Rd2HTML
> 
>         Rd <- eval(substitute(parse_Rd(f, encoding = enc),
>                              list(f = Rd,enc = encoding)))
> 

I don't understand the

   substitute(...())

bit (looks like an unexpected feature), but I suspect that it might also
be a good idea to read and understand the first dozen lines or so of the
lm function itself.

-- 
   O__  ---- Peter Dalgaard             ?ster Farimagsgade 5, Entr.B
  c/ /'_ --- Dept. of Biostatistics     PO Box 2099, 1014 Cph. K
 (*) \(*) -- University of Copenhagen   Denmark      Ph:  (+45) 35327918
~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk)              FAX: (+45) 35327907



------------------------------

Message: 26
Date: Wed, 28 Jan 2009 10:30:59 -0500
From: David Winsemius <dwinsemius at comcast.net>
Subject: Re: [R] plot slideshow
To: diego Diego <dhabbyc at gmail.com>
Cc: r-help at r-project.org
Message-ID: <68773229-5537-40A1-AFB9-2F956556487B at comcast.net>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

If you investigate how the call:

demo(graphics)

... works, you find that the first interactive event is handled by the  
code at the end of the demo function, Just type:

demo

The rest of the interactive events are handled by this single line at  
the beginning of the graphics.R code that creates an implicit loop:

oask <- devAskNewPage(dev.interactive(orNone = TRUE))

You could have found this by looking at the Writing R Extensions  
documentation and then noting that demos are placed in demo  
subdirectories of the packages. Going to a package that you knew  
contained a working demo, in this cases the graphics package, you  
would find a graphics.R demo script.

-- 
David Winsemius

On Jan 28, 2009, at 9:44 AM, diego Diego wrote:

> Dear R experts:
> I've seen that it's possible to make a sort of "slideshow" with  
> several
> R-plots (each slide is activated by a click on the mouse). How can I  
> put
> this on a R-script???
>
>
> Regards.
>
> D.
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 27
Date: Wed, 28 Jan 2009 15:34:47 +0000 (UTC)
From: Dieter Menne <dieter.menne at menne-biomed.de>
Subject: Re: [R] putting match.call to good use
To: r-help at stat.math.ethz.ch
Message-ID: <loom.20090128T153337-162 at post.gmane.org>
Content-Type: text/plain; charset=us-ascii

Prof Brian Ripley <ripley <at> stats.ox.ac.uk> writes:

> The way to do this is eval(substitute()).  E.g. from the new Rd2HTML
> 

What is Rd2HTML? 

Dieter



------------------------------

Message: 28
Date: Wed, 28 Jan 2009 10:43:16 -0500
From: JLucke at ria.buffalo.edu
Subject: Re: [R] OT: Adding verbatim R code text into LaTeX documents:
	texttt; verb or url?
To: "Peter Dunn" <PDunn2 at usc.edu.au>
Cc: R Help <r-help at r-project.org>, r-help-bounces at r-project.org
Message-ID:
	<OFDE86EA96.6227F93B-ON8525754C.0055A1EF-8525754C.005676E8 at ria.buffalo.edu>
	
Content-Type: text/plain

LaTeX offers a verbatim environment. 

\begin{verbatim} 
This is maintained verbatim, Latex commands and environments are typeset 
as written without any processing. 
\end{verbatim}

Be sure to use the package verbatim.
---Joe



"Peter Dunn" <PDunn2 at usc.edu.au> 
Sent by: r-help-bounces at r-project.org
01/28/2009 01:41 AM

To
"R Help" <r-help at r-project.org>
cc

Subject
[R] OT: Adding verbatim R code text into LaTeX documents: texttt; verb or 
url?






Hi all

I use Sweave extensively to mix R and LaTeX, and often have R code 
appearing in my LaTeX document.

Just a quick question then: What is the best way to add example of R 
commands into LaTeX in-line?  (That is, not using Sweave.)  For example, 
suppose I wish to place in my document this instruction:



...is done in R using the command  \verb|lm( y ~ var.one + var.two )| as 
follows:



I used  \verb  above, but I see three options:  \verb, \url (package url), 
or \texttt; there are probably others.

Here are my comments on these three:

- Using \texttt is OK, but it disappears my tildes and can hyphenate

- Using \verb is good, but it can hyphenate.

- Using \url is very good, but it:
* disappears my spaces; so for the above example, the spaces added for 
clarity are gone.
* Minor:  I like my verbatim text a little smaller (\small size), and 
change the font size for verbatim using 
\def\verbatim at font{\small\ttfamily} but \url seems to ignore this and 
appears larger than if I used \text or \verb.

Also, using \url often adds line-breaks mid-variable at the dots (for 
example, splitting  var.one  to have "var." on one line, and "one" on the 
next). I'm not sure this is a problem or not; here it is just an 
observation.

Ideally, one would want a LaTeX function, say \rcode{}, that displayed 
in-text using non-proportional font, kept tildes, kept spacing, uses my 
verb-font changes, and broke at sensible places for R.  (I don't want 
much, do I?)

So two questions:

* What do other people do?  Maybe there is a solution I have over-looked.

* Is there an easy solution?  I suppose writing such a command in LaTeX is 
possible, but there is strong evidence to reject the hypothesis that I 
would be able to write one.  Maybe one of the above choices are easily 
adopted.

If no easy solutions exist or emerge, I'm happy to run with \url.

Thanks again.

P.

Peter Dunn
Biostatistician
School of Health and Sport Science
Faculty of Science, Health and Education
University of the Sunshine Coast

Tel: +61 7 5456 5085
Fax: +61 7 5430 2896
Email: pdunn2 at usc.edu.au
www.usc.edu.au


CRICOS Provider Number: 01595D

This communication is intended for the recipient only and should not be 
forwarded, distributed or otherwise read by others without express 
permission. The views expressed in this email are not necessarily those of 
the University of the Sunshine Coast.

-- 




------------------------------

Message: 29
Date: Wed, 28 Jan 2009 15:44:10 +0000 (GMT)
From: Prof Brian Ripley <ripley at stats.ox.ac.uk>
Subject: Re: [R] putting match.call to good use
To: Dieter Menne <dieter.menne at menne-biomed.de>
Cc: r-help at stat.math.ethz.ch
Message-ID: <alpine.OSX.1.00.0901281540450.97868 at tystie.local>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed

On Wed, 28 Jan 2009, Dieter Menne wrote:

> Prof Brian Ripley <ripley <at> stats.ox.ac.uk> writes:
>
>> The way to do this is eval(substitute()).  E.g. from the new Rd2HTML
>>
>
> What is Rd2HTML?

A function in the R-devel version of R (is 'new' not rather a hint?).
>From the NEWS file:

     o	parse_Rd(), an experimental parser for Rd files, and Rd2txt(),
 	Rd2HTML(), Rd2latex() and Rd2ex(), even more experimental
 	converters, have been added to package 'tools'.

-- 
Brian D. Ripley,                  ripley at stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595



------------------------------

Message: 30
Date: Wed, 28 Jan 2009 21:17:35 +0530
From: venkata kirankumar <kiran4u2all at gmail.com>
Subject: [R] Grouping problem
To: r-help at r-project.org
Message-ID:
	<27f678620901280747x1374203di84e0710fb5b7b9a3 at mail.gmail.com>
Content-Type: text/plain

Hi all,
I have a problem with grouping like I have to give count of employes in each
department like

if in one company there is departments like
Mechanical, Computer, Fitting, electronics and Chemical

hear I have to retreave the number of employes in each department and as
well as
I have to retreave number of John's in each department

is there any function is there which can solve my problem
i tried with    subset();
but it is retreaving one department's data only
can anyone suggest what I have to do for this


thanks in advance

	[[alternative HTML version deleted]]



------------------------------

Message: 31
Date: Wed, 28 Jan 2009 16:51:35 +0100
From: <mauede at alice.it>
Subject: [R] help with plot layout
To: <r-help at stat.math.ethz.ch>
Cc: gunter.berton at gene.com
Message-ID:
	<6B32C438581E5D4C8A34C377C3B334A401752993 at FBCMST11V04.fbc.local>
Content-Type: text/plain; charset="iso-8859-1"

It takes a lot of sweat to generate a composite plot with R ...  sigh.
I though I was almost done when I met the umpteenth hurdle. I cannot place a nice title on the 2nd plot (raw signal)
on the layout. I do not have control on where either the "main" option of "plot" function, or "title", place the text
string which keeps dysplaying chopped from above. I also tried "text", changing many times the string coordinates, but could not see any text anywhere on the canvas . 
By the way, since the layout breaks the canvas into 4 parts, are the text coordinates absolute (referred to the canvas) or 
relative (referred to the part) ?
Please, find attached the generated drawing. The generating script is i the following.
Thank you so much,
Maura

##################################################################
 WavMaxNumCoef <- 30
 setwd("C:/Documents and Settings/Monville/SpAn-Tests/16440-Raw-Dir")

 xx <- read.table("Interp-Amp-PhasePlus16440.txt",header=TRUE, sep=" ")
 NumCycles <- max(xx[,"cycle"])
 TickPos <- vector(length=NumCycles)
 TickCoord <- vector(length=NumCycles)
 for(i in 1:NumCycles) {
    TickPos[i] <- xx[min(which(xx[,"cycle"] == i)),1]
 }

 aa <- read.table( "16440-Alpha.txt" )
 xaa <- seq(1:length(t(aa)))

 vv <- read.table("16440-Vanishing-Moments")
 vvLab <- seq(1,WavMaxNumCoef/2,1)
 vvCounts <- vector(length=WavMaxNumCoef/2)
 for(k in 1:(WavMaxNumCoef/2)) {
    vvCounts[k] <- length(which(vv[] == k))
 }
 yyLab <- seq(1,length(t(vv)),2)

 bb <- read.table("16440-Length")
 bbLab <- seq(min(bb),max(bb),1)
 bb <- sort(t(bb))
 bbCounts <- as.numeric(vector(length=(max(bb)-min(bb)+1)))
 for(k in 1:length(bbCounts)) {
    bbCounts[k] <- length(which(bb[] == (k +min(bb) -1)))
 }
 zzLab <- seq(1,max(bbCounts),1)

# DEFINE LAYOUT
 x11(width=22,height=14)
 nf <- layout(matrix(c(1,3,2,4),2,2,byrow=TRUE), c(3,1), c(2,2),FALSE)
 layout.show(nf)

# PLOT DONOHO ALPHA
 par(mar=c(10,4,2,5),xaxt="n",cex.axis=1,pty="m")
 plot(xaa,t(aa),type="h")
 par (xaxt="s",xaxp=c(0,95.964,24),xaxs="i")
 axis(1,at=TickPos,labels=as.character(TickPos),col="red",col.axis="red",font.axis=1)

# PLOT RAW SIGNAL
 par(mar=c(3,4,0,5),xaxt="n",cex.axis=1,pty="m")
 plot(xx[,1],xx[,2],pch=3,type="l",frame.plot=FALSE,xpd=TRUE)
 title("Raw Signal 16440",cex.main=1.0,font=2)
 par (xaxt="s",xaxp=c(0,95.964,24),xaxs="i")
 axis(1,at=TickPos,labels=as.character(TickPos),col="red",col.axis="red", font.axis=1)

# PLOT VANISHING MOMENT DISTRIBUTION
 par(mar=c(1,0,2,3),xaxt="n",yaxt="n",cex.axis=0.7,pty="m")
 barplot(vvCounts,width=1,space=0,horiz=TRUE,axes=FALSE)
 par(xaxt="s",yaxt="s",crt=180,srt=270,adj=1,las=3,xpd=TRUE)
 text(x=25.5,y=15.3,pos=4,"Wavelet Vanishing Moments Distribution",cex=1.0,font=2)
 axis(2,at=vvLab-1,labels=as.character(vvLab),col="red",col.axis="red",font.axis=1,xpd=TRUE,
      cex.lab=1)
 axis(3,at=yyLab-1,labels=as.character(yyLab),col="red",col.axis="red",font.axis=1,xpd=TRUE,
      cex.lab=0.8,cex.axis=0.8)

# PLOT CYCLES LENGTH
 par(mar=c(0,0,1,3),xaxt="n",yaxt="n",cex.axis=1)
 barplot(bbCounts,width=1,axes=FALSE,space=0,horiz=TRUE)
 par(xaxt="s",yaxt="s",crt=180,srt=270,adj=1,las=3,cex.lab=0.1,xpd=TRUE)
 text(x=15.5,y=65.3,pos=4,"Cycles Length Distribution",cex=1.0,font=2)
 axis(2,at=as.numeric(bbLab)-41,labels=bbLab,col="red",col.axis="red",font.axis=1,
      lab=c(10,10,15),cex.lab=0.7,cex.axis=0.6)
 axis(3,at=zzLab,labels=as.character(zzLab),col="red",col.axis="red",font.axis=1,xpd=TRUE,
      cex.lab=1,cex.axis=0.8)


# cords <-locator(n=3)






e tutti i telefonini TIM!
Vai su 

------------------------------

Message: 32
Date: Wed, 28 Jan 2009 09:13:51 -0500
From: "Rixon, John C." <JCRixon at wellington.com>
Subject: [R] Newbie question about "grouping"
To: <r-help at r-project.org>
Message-ID:
	<761B467185125146B58FC9540C493F6A07B46196 at PROD-MSG-CLU-03.messaging.wellmanage.com>
	
Content-Type: text/plain

Hi folks:

I am a SQL guy who just downloaded and installed R yesterday.  I am
trying to evaluate some "complex" aggregations we are currently
performing with Syncsort (and have tried in Oracle) with R.  I have
loaded data in a dataframe and have performed some of the simple
aggregations on a subset of data.  What I do not see how to do though,
is to "group" the aggregations on a particular key value (e.g., sum
market_value over account_id).

If you can point me in the right direction I'd very much appreciate it.

Thanks!

John

	[[alternative HTML version deleted]]



------------------------------

Message: 33
Date: Wed, 28 Jan 2009 17:11:04 +0100
From: Mark Na <mtb954 at gmail.com>
Subject: [R] Logical subset of the columns in a dataframe
To: r-help at r-project.org
Message-ID:
	<e40d78ce0901280811l5edc87f4lc42485ed6cbe3e33 at mail.gmail.com>
Content-Type: text/plain

Hi R-helpers,

I've been struggling with a problem for most of the day (!) so am finally
resorting to R-help.

I would like to subset the columns of my dataframe based on the frequency
with which the columns contain non-zero values. For example, let's say that
I want to retain only those columns which contain non-zero values in at
least 1% of their rows.

In Excel I would calculate a row at the bottom of my data sheet and use the
following function

=countif(range,">0")

to identify the number of non-zero cells in each column. Then, I would
divide that by the number of rows to obtain the frequency of non-zero values
in each column. Then, I would delete those columns with frequencies < 0.01.

But, I'd like to do this in R. I think the missing link is an analog to
Excel's countif function. Any ideas?

Thanks! Mark

	[[alternative HTML version deleted]]



------------------------------

Message: 34
Date: Wed, 28 Jan 2009 11:11:59 -0500
From: David Winsemius <dwinsemius at comcast.net>
Subject: Re: [R] Grouping problem
To: venkata kirankumar <kiran4u2all at gmail.com>
Cc: r-help at r-project.org
Message-ID: <B0F494E3-C48F-4B55-B222-E1705451D746 at comcast.net>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

A vague answer is the best you should hope for with such a vague  
question with no sample data:

?table
?xtabs
?"=="

A search on "Frequency tables from factors" should get you to the  
intro to R section with that name.

-- 
David Winsemius

On Jan 28, 2009, at 10:47 AM, venkata kirankumar wrote:

> Hi all,
> I have a problem with grouping like I have to give count of employes  
> in each
> department like
>
> if in one company there is departments like
> Mechanical, Computer, Fitting, electronics and Chemical
>
> hear I have to retreave the number of employes in each department  
> and as
> well as
> I have to retreave number of John's in each department
>
> is there any function is there which can solve my problem
> i tried with    subset();
> but it is retreaving one department's data only
> can anyone suggest what I have to do for this

If you had offered the code that was doing this, there may have been a  
person who could explain how it could be modified to return a more  
desirable value.
>
>
>
> thanks in advance
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 35
Date: Wed, 28 Jan 2009 10:12:59 -0600
From: hadley wickham <h.wickham at gmail.com>
Subject: Re: [R] Grouping problem
To: venkata kirankumar <kiran4u2all at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<f8e6ff050901280812p596c0fecr5627386123116a64 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

You might want to have a look at the plyr package,
http://had.co.nz/plyr, which includes tools for performing this sort
of grouping.

Hadley

On Wed, Jan 28, 2009 at 9:47 AM, venkata kirankumar
<kiran4u2all at gmail.com> wrote:
> Hi all,
> I have a problem with grouping like I have to give count of employes in each
> department like
>
> if in one company there is departments like
> Mechanical, Computer, Fitting, electronics and Chemical
>
> hear I have to retreave the number of employes in each department and as
> well as
> I have to retreave number of John's in each department
>
> is there any function is there which can solve my problem
> i tried with    subset();
> but it is retreaving one department's data only
> can anyone suggest what I have to do for this
>
>
> thanks in advance
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
http://had.co.nz/



------------------------------

Message: 36
Date: Wed, 28 Jan 2009 11:16:30 -0500
From: David Winsemius <dwinsemius at comcast.net>
Subject: Re: [R] Newbie question about "grouping"
To: "Rixon, John C." <JCRixon at wellington.com>
Cc: r-help at r-project.org
Message-ID: <78B3843E-0007-495B-A052-8C9E3AC82788 at comcast.net>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes


?by
?aggregate
?ave

Further specifics might be forthcoming if self-contained example data  
and desired output were offered. The help pages will have worked  
examples, of course.

-- 
David Winsemius


On Jan 28, 2009, at 9:13 AM, Rixon, John C. wrote:

> Hi folks:
>
> I am a SQL guy who just downloaded and installed R yesterday.  I am
> trying to evaluate some "complex" aggregations we are currently
> performing with Syncsort (and have tried in Oracle) with R.  I have
> loaded data in a dataframe and have performed some of the simple
> aggregations on a subset of data.  What I do not see how to do though,
> is to "group" the aggregations on a particular key value (e.g., sum
> market_value over account_id).
>
> If you can point me in the right direction I'd very much appreciate  
> it.
>
> Thanks!
>
> John
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 37
Date: Wed, 28 Jan 2009 08:18:15 -0800 (PST)
From: Thomas Lumley <tlumley at u.washington.edu>
Subject: Re: [R] Newbie question about "grouping"
To: "Rixon, John C." <JCRixon at wellington.com>
Cc: r-help at r-project.org
Message-ID: <Pine.LNX.4.43.0901280818150.7342 at hymn14.u.washington.edu>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed

Some useful commands are:

by(), aggregate(), ave(), split().

eg
   by(market_value, account_id, sum)

         -thomas


On Wed, 28 Jan 2009, Rixon, John C. wrote:

> Hi folks:
>
> I am a SQL guy who just downloaded and installed R yesterday.  I am
> trying to evaluate some "complex" aggregations we are currently
> performing with Syncsort (and have tried in Oracle) with R.  I have
> loaded data in a dataframe and have performed some of the simple
> aggregations on a subset of data.  What I do not see how to do though,
> is to "group" the aggregations on a particular key value (e.g., sum
> market_value over account_id).
>
> If you can point me in the right direction I'd very much appreciate it.
>
> Thanks!
>
> John
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

Thomas Lumley			Assoc. Professor, Biostatistics
tlumley at u.washington.edu	University of Washington, Seattle



------------------------------

Message: 38
Date: Wed, 28 Jan 2009 10:20:15 -0600
From: hadley wickham <h.wickham at gmail.com>
Subject: Re: [R] Newbie question about "grouping"
To: "Rixon, John C." <JCRixon at wellington.com>
Cc: r-help at r-project.org
Message-ID:
	<f8e6ff050901280820r3098ae20raf6b2e770a1c2d64 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

On Wed, Jan 28, 2009 at 8:13 AM, Rixon, John C. <JCRixon at wellington.com> wrote:
> Hi folks:
>
> I am a SQL guy who just downloaded and installed R yesterday.  I am
> trying to evaluate some "complex" aggregations we are currently
> performing with Syncsort (and have tried in Oracle) with R.  I have
> loaded data in a dataframe and have performed some of the simple
> aggregations on a subset of data.  What I do not see how to do though,
> is to "group" the aggregations on a particular key value (e.g., sum
> market_value over account_id).
>
> If you can point me in the right direction I'd very much appreciate it.

Have a look at the plyr package, http://had.co.nz/plyr, and associated
documentation. If you're doing pivot table type aggregations, you
might also want to have a look at the reshape package,
http://had.co.nz/reshape.


Hadley

-- 
http://had.co.nz/



------------------------------

Message: 39
Date: Wed, 28 Jan 2009 16:24:11 +0000 (GMT)
From: Prof Brian Ripley <ripley at stats.ox.ac.uk>
Subject: Re: [R] Logical subset of the columns in a dataframe
To: Mark Na <mtb954 at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<alpine.LFD.2.00.0901281621030.31070 at gannet.stats.ox.ac.uk>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed

On Wed, 28 Jan 2009, Mark Na wrote:

> Hi R-helpers,
>
> I've been struggling with a problem for most of the day (!) so am finally
> resorting to R-help.
>
> I would like to subset the columns of my dataframe based on the frequency
> with which the columns contain non-zero values. For example, let's say that
> I want to retain only those columns which contain non-zero values in at
> least 1% of their rows.
>
> In Excel I would calculate a row at the bottom of my data sheet and use the
> following function
>
> =countif(range,">0")
>
> to identify the number of non-zero cells in each column. Then, I would
> divide that by the number of rows to obtain the frequency of non-zero values
> in each column. Then, I would delete those columns with frequencies < 0.01.
>
> But, I'd like to do this in R. I think the missing link is an analog to
> Excel's countif function. Any ideas?

Use something like

     DF[sapply(DF, function(x) mean(x) >= 0.01)]

Since logical values are converted to 0/1, mean() gives the frequency 
(and sum() the count).

>
> Thanks! Mark
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

-- 
Brian D. Ripley,                  ripley at stats.ox.ac.uk
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595



------------------------------

Message: 40
Date: Wed, 28 Jan 2009 11:25:55 -0500
From: Ted Byers <r.ted.byers at gmail.com>
Subject: Re: [R] Mystery Error in midnightStandard
To: Yohan Chalabi <chalabi at phys.ethz.ch>
Cc: R-help Forum <r-help at r-project.org>
Message-ID:
	<4f1819890901280825w3cfa983bi8c68f1b85c22d378 at mail.gmail.com>
Content-Type: text/plain

Hi Yohan,

On Wed, Jan 28, 2009 at 10:28 AM, Yohan Chalabi <chalabi at phys.ethz.ch>wrote:

> >>>> "TB" == Ted Byers <r.ted.byers at gmail.com>
> >>>> on Wed, 28 Jan 2009 09:30:58 -0500
>
>   TB> It is certain that all entries have the same format, but I'm
>   TB> starting to
>   TB> think that the error message is something of a red herring.
>   TB> Consider this:
>   TB>
>   TB> > year = 2009
>   TB> > week = 0
>   TB> > day = 3
>   TB> > datestr = sprintf(%i-%i-%i,year,week,day);datestr
>   TB> [1] 2009-0-3
>   TB> > date1 = timeDate(datestr, format = %Y-%U-%w);
>   TB> > date1
>   TB> GMT
>   TB> [1] [NA]
>   TB> > day = 4
>   TB> > datestr = sprintf(%i-%i-%i,year,week,day);datestr
>   TB> [1] 2009-0-4
>   TB> > date1 = timeDate(datestr, format = %Y-%U-%w);
>   TB> > date1
>   TB> GMT
>   TB> [1] [2009-01-01]
>   TB> >
>   TB> > datestr = sprintf(%i-%i-%i,year,week,3);datestr
>   TB> [1] 2009-0-3
>   TB> > date2 = timeDate(datestr, format = %Y-%U-%w);date2
>   TB> GMT
>   TB> [1] [NA]
>   TB> > difftimeDate(date2,date1, units = weeks)
>    TB> Error in midnightStandard(charvec, format) :
>   TB> 'charvec' has non-NA entries of different number of characters
>    TB> In addition: Warning messages:
>   TB> 1: In min(x) : no non-missing arguments to min; returning Inf
>   TB> 2: In max(x) : no non-missing arguments to max; returning -Inf
>   TB>
>   TB>
>   TB>
>   TB> The first values for year, week and day are the values on
>   TB> which my loop
>   TB> dies.  It returns 'NA' here.  It seems clear that it is
>   TB> returning NA because
>   TB> the date that data corresponds to is 2008-12-31.
>   TB>
>   TB> The error is being produced by difftimeDate rather than timeDate
>   TB> (as shown
>   TB> by the above session).  But that represents a flaw in the
>   TB> function design.
>
> This is not a flaw in timeDate. it behaves the same way as
> 'as.POSIXct'
>

That the two behave the same doesn't change the assessment that the design
is flawed.  That doesn't mean that the function is wrong.  It means only
that the behaviour can be made more useful.  For example, in SQL, if a given
calculation returns NULL, and the result is subsequently used in another
calculation, the result that returns is also NULL.  That is quite useful,
and admits algorithms that can react appropriately to NULLs when necessary.
That is arguably better than forcing the code to fail the moment a NULL is
used in a secondary calculation.  In C++, OTOH, one can catch the problem
earlier using, e.g., exceptions, again allowing the program to complete even
when problems arise for certain values or combinations thereof.

As a software engineer, I understand the issues involved in creating
libraries.  If I want to incorporate the functionality of a given standard
suite of functions (e.g. ANSI C standard library functions, or posix
functions), my first step would be to ensure I can duplicate how they
behave.  But I would not stop there.  There are, for example, serious design
flaws in many ANSI C functions that, ignored, introduce serious security
defects in applications that use them.  I would therefore refactor them to
eliminate the security defects.  If they can not be eliminated, I would
replace the function in question by a similar function that does not have
that security defect.

Posix is a useful, but old, standard, and I am merely suggesting that once
you have duplicated it, look beyond it to ways it can be improved upon.
There is more to the design of a function than whether or not it gives the
right result with good input.  There is how it behaves when there is a
problem with the inputs and whether or not you force the calling code to die
when a problem arises or you give the calling code a way to react to such
problems.  When I add functions to my own C++ or Java libraries, I normally
include more bad input data in the unit tests than good data (though the
latter is sufficient to ensure correct results are invariably obtained),
precisely so I can document how it behaves when there is a problem and give
coders who use it a variety of options to use to deal with them.


>
> strptime(datestr, format = "%Y-%U-%w")
>
> Instead of claiming that there is a flaw in the function you could have
> suggested an 'is.na' method for 'timeDate'.
>

At the time, I did not know about is.na.  I have spent the past hour trying
is.na, but to no avail.  I guess that is no surprise to you, but that it
would fail is not reflected in the R documentation of is.na.  That mentions
S3, but not S4.  As I just recently started using R, I have not yet looked
at what S3 and S4 are, so that is a few more hours of study before I get
this problem solved.


>
> I will add an 'is.na' method in the dev version of 'timeDate'.
>
>
Thanks.  I'll benefit from that once it makes it into the production
release.  In the mean time, I need to find a way to make something similar
now, in my script.

Thanks

Ted

	[[alternative HTML version deleted]]



------------------------------

Message: 41
Date: Wed, 28 Jan 2009 11:35:19 -0500
From: David Winsemius <dwinsemius at comcast.net>
Subject: Re: [R] Logical subset of the columns in a dataframe
To: Mark Na <mtb954 at gmail.com>
Cc: r-help at r-project.org
Message-ID: <AA1C6FDC-927E-468F-B31A-0A8EA38FC2E3 at comcast.net>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

One approach to such a problem would be to use a logical vector inside  
the function colSums.

?colSums

 > DF <- data.frame(XX= runif(20), YY=runif(20))

 > colSums(DF > 0.5)
XX YY
11  9

 > colSums(DF > -Inf)
XX YY
20 20
 >
 > colSums(DF> 0.5)/colSums(DF > -Inf) #could have used DF >= min(DF)  
in the denominator
   XX   YY
0.55 0.45



-- 
David Winsemius

On Jan 28, 2009, at 11:11 AM, Mark Na wrote:

> Hi R-helpers,
>
> I've been struggling with a problem for most of the day (!) so am  
> finally
> resorting to R-help.
>
> I would like to subset the columns of my dataframe based on the  
> frequency
> with which the columns contain non-zero values. For example, let's  
> say that
> I want to retain only those columns which contain non-zero values in  
> at
> least 1% of their rows.
>
> In Excel I would calculate a row at the bottom of my data sheet and  
> use the
> following function
>
> =countif(range,">0")
>
> to identify the number of non-zero cells in each column. Then, I would
> divide that by the number of rows to obtain the frequency of non- 
> zero values
> in each column. Then, I would delete those columns with frequencies  
> < 0.01.

I don't think that would do what you describe unless you were only  
working with single column ranges. Functions on ranges in Excel are  
not calculated by column.

>
>
> But, I'd like to do this in R. I think the missing link is an analog  
> to
> Excel's countif function. Any ideas?
>
> Thanks! Mark
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 42
Date: Wed, 28 Jan 2009 17:48:24 +0100
From: Yohan Chalabi <chalabi at phys.ethz.ch>
Subject: Re: [R] Mystery Error in midnightStandard
To: Ted Byers <r.ted.byers at gmail.com>
Cc: R-help Forum <r-help at r-project.org>
Message-ID: <20090128174824.561e94cb at mimi>
Content-Type: text/plain; charset=US-ASCII

>>>> "TB" == Ted Byers <r.ted.byers at gmail.com>
>>>> on Wed, 28 Jan 2009 11:25:55 -0500

   TB> That the two behave the same doesn't change the assessment
   TB> that the design
   TB> is flawed.  That doesn't mean that the function is wrong.
   TB> It means only
   TB> that the behaviour can be made more useful.  For example,
   TB> in SQL, if a given
   TB> calculation returns NULL, and the result is subsequently used
   TB> in another
   TB> calculation, the result that returns is also NULL.  That is
   TB> quite useful,
   TB> and admits algorithms that can react appropriately to NULLs
   TB> when necessary.
   TB> That is arguably better than forcing the code to fail the
   TB> moment a NULL is
   TB> used in a secondary calculation.  In C++, OTOH, one can catch
   TB> the problem
   TB> earlier using, e.g., exceptions, again allowing the program
   TB> to complete even
   TB> when problems arise for certain values or combinations thereof.
   TB>
   TB> As a software engineer, I understand the issues involved
   TB> in creating
   TB> libraries.  If I want to incorporate the functionality of a
   TB> given standard
   TB> suite of functions (e.g. ANSI C standard library functions,
   TB> or posix
   TB> functions), my first step would be to ensure I can duplicate
   TB> how they
   TB> behave.  But I would not stop there.  There are, for example,
   TB> serious design
   TB> flaws in many ANSI C functions that, ignored, introduce
   TB> serious security
   TB> defects in applications that use them.  I would therefore
   TB> refactor them to
   TB> eliminate the security defects.  If they can not be eliminated,
   TB> I would
   TB> replace the function in question by a similar function that
   TB> does not have
   TB> that security defect.
   TB>
   TB> Posix is a useful, but old, standard, and I am merely suggesting
   TB> that once
   TB> you have duplicated it, look beyond it to ways it can be
   TB> improved upon.
   TB> There is more to the design of a function than whether or not
   TB> it gives the
   TB> right result with good input.  There is how it behaves when
   TB> there is a
   TB> problem with the inputs and whether or not you force the
   TB> calling code to die
   TB> when a problem arises or you give the calling code a way to
   TB> react to such
   TB> problems.  When I add functions to my own C++ or Java libraries,
   TB> I normally
   TB> include more bad input data in the unit tests than good data
   TB> (though the
   TB> latter is sufficient to ensure correct results are invariably
   TB> obtained),
   TB> precisely so I can document how it behaves when there is a
   TB> problem and give
   TB> coders who use it a variety of options to use to deal with them.
   TB>
   TB>
   TB> >
   TB> > strptime(datestr, format = %Y-%U-%w)
   TB> >
   TB> > Instead of claiming that there is a flaw in the function
   TB> you could have
   TB> > suggested an 'is.na' method for 'timeDate'.
   TB> >
   TB>
   TB> At the time, I did not know about is.na.  I have spent the
   TB> past hour trying
   TB> is.na, but to no avail.  I guess that is no surprise to you,
   TB> but that it
   TB> would fail is not reflected in the R documentation of is.na.
   TB> That mentions
   TB> S3, but not S4.  As I just recently started using R, I have
   TB> not yet looked
   TB> at what S3 and S4 are, so that is a few more hours of study
   TB> before I get
   TB> this problem solved.
   TB>
   TB>
   TB> >
   TB> > I will add an 'is.na' method in the dev version of 'timeDate'.
   TB> >
   TB> >
   TB> Thanks.  I'll benefit from that once it makes it into the
   TB> production
   TB> release.  In the mean time, I need to find a way to make
   TB> something similar
   TB> now, in my script.

setMethod("is.na", "timeDate", function(x) is.na(as.POSIXct(x)))

   TB>
   TB> Thanks




-- 
PhD student
Swiss Federal Institute of Technology
Zurich

www.ethz.ch



------------------------------

Message: 43
Date: Wed, 28 Jan 2009 16:55:40 +0000
From: June Wong <neptune545 at hotmail.com>
Subject: [R] constrainOptim
To: <r-help at r-project.org>
Message-ID: <BAY136-W82AA69673D0B171ED34178AC80 at phx.gbl>
Content-Type: text/plain


Dear R helpers

I have a question regarding the constrainOptim. 
I'm coding the nested logit and would like to set a bound of rho to (0,1] as an extreme value distribution where rho = exp(lambda)/1+exp(lambda)
I wonder if I can do that directly in optim (say rho > 0 & <= 1) or need to use constrainOptim
I read the help but still don't know how to set ui and ci

Thanks,
June

_________________________________________________________________


	[[alternative HTML version deleted]]



------------------------------

Message: 44
Date: Wed, 28 Jan 2009 12:07:14 -0500
From: Ravi Varadhan <rvaradhan at jhmi.edu>
Subject: Re: [R] constrainOptim
To: June Wong <neptune545 at hotmail.com>
Cc: r-help at r-project.org
Message-ID: <f6d1b5dede2.49804a72 at johnshopkins.edu>
Content-Type: text/plain; charset=us-ascii

For simple box constraints, i.e. lower and upper limits directly on the parameters themselves, you don't need ConstrOptim.  You can get the job done with the "L-BFGS-B" algorithm in optim() or using nlminb() or using the spg() function in the BB package.  In this case the feasible region is a hyper-rectangle (could be infinite in some dimensions).

ConstrOptim() is useful when you have more general linear inequality constraints, i.e. constraints on linear combinations of parameters. In this case the feasible region is a convex polytope.  

Best,
Ravi.

____________________________________________________________________

Ravi Varadhan, Ph.D.
Assistant Professor,
Division of Geriatric Medicine and Gerontology
School of Medicine
Johns Hopkins University

Ph. (410) 502-2619
email: rvaradhan at jhmi.edu


----- Original Message -----
From: June Wong <neptune545 at hotmail.com>
Date: Wednesday, January 28, 2009 11:57 am
Subject: [R] constrainOptim
To: r-help at r-project.org


>  Dear R helpers
>   
>  I have a question regarding the constrainOptim. 
>  I'm coding the nested logit and would like to set a bound of rho to 
> (0,1] as an extreme value distribution where rho = exp(lambda)/1+exp(lambda)
>  I wonder if I can do that directly in optim (say rho > 0 & <= 1) or 
> need to use constrainOptim
>  I read the help but still don't know how to set ui and ci
>   
>  Thanks,
>  June
>  
>  _________________________________________________________________
>  
>  
>  	[[alternative HTML version deleted]]
>  
>  ______________________________________________
>  R-help at r-project.org mailing list
>  
>  PLEASE do read the posting guide 
>  and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 45
Date: Wed, 28 Jan 2009 18:07:28 +0100
From: "Strubbe Diederik" <diederik.strubbe at ua.ac.be>
Subject: [R] repeated measures design for GAM?
To: <r-help at R-project.org>
Message-ID:
	<C9854550FEF14846A136100B3EC52F73B6B5AC at xmail05.ad.ua.ac.be>
Content-Type: text/plain

Dear all,

I have a question on the use of GAM with repeated measures. My dataset is as follows:
- a number of study areas where bird abundance has been determined. Counts have been performed in 3 consecutive years and there were 2 counts per year (i.e. in total 6 counts).
- a number of environmental predictors that do not change over year Xi).
When using a GLM, a repeated measures design would like: (for example)

lme(Bird_abundance = study_area + count + X1 + X2 + X3,random = ~time|cow).

However, I have found no analogue design for a GAM. For now, I have averaged my bird abundances but I wondered whether a more subtle and elegant strategy exists...?

Many thanks,


Diederik 



Diederik Strubbe
Evolutionary Ecology Group
Department of Biology, University of Antwerp
Universiteitsplein 1
B-2610 Antwerp, Belgium
http://webhost.ua.ac.be/deco
tel : 32 3 820 23 85


	[[alternative HTML version deleted]]



------------------------------

Message: 46
Date: Wed, 28 Jan 2009 18:09:38 +0100
From: "Strubbe Diederik" <diederik.strubbe at ua.ac.be>
Subject: [R] Repeated measures design for GAM? - corrected question...
To: <r-help at R-project.org>
Message-ID:
	<C9854550FEF14846A136100B3EC52F73B6B5AD at xmail05.ad.ua.ac.be>
Content-Type: text/plain

Dear all,

I have a question on the use of GAM with repeated measures. My dataset is as follows:
- a number of study areas where bird abundance has been determined. Counts have been performed in 3 consecutive years and there were 2 counts per year (i.e. in total 6 counts).
- a number of environmental predictors that do not change over year Xi).
When using a GLM, a repeated measures design would like: (for example)

lme(Bird_abundance = study_area + count +year+ X1 + X2 + X3,random = ~count|study_area).

However, I have found no analogue design for a GAM. For now, I have averaged my bird abundances but I wondered whether a more subtle and elegant strategy exists...?

Many thanks,


Diederik

Diederik Strubbe
Evolutionary Ecology Group
Department of Biology, University of Antwerp
Universiteitsplein 1
B-2610 Antwerp, Belgium
http://webhost.ua.ac.be/deco
tel : 32 3 820 23 85


	[[alternative HTML version deleted]]



------------------------------

Message: 47
Date: Wed, 28 Jan 2009 19:16:30 +0200
From: constantine <costas.magnuse at gmail.com>
Subject: [R] Sweave problem with greek text
To: r-help at r-project.org
Message-ID:
	<30ddfdae0901280916i1e92e040s336ec0227305723 at mail.gmail.com>
Content-Type: text/plain; charset=UTF-8

Dear Sweave and R aficionados,


I am using R and Latex for many years, writing texts in greek. I tried
to combine them with Sweave, but without any success.

Could you provide me with any help?

Usually my LaTeX files are like this iso-8859-7 encoded .tex file:
http://costis.name/0various/lists/R/sweave/successful.greek.tex ,
which happily produces
http://costis.name/0various/lists/R/sweave/successful.greek.pdf .

I tried using Sweave on the iso-8859-7 encoded .Rnw file:
http://costis.name/0various/lists/R/sweave/unsuccessful.sweave.Rnw ,
but I am getting misencoded greek text and also misencoded R code as
it appears in  http://costis.name/0various/lists/R/sweave/unsuccessful.sweave.pdf
.

The .tex file that Sweave produces is located at
http://costis.name/0various/lists/R/sweave/unsuccessful.sweave.tex
I am also the latex R error code
http://costis.name/0various/lists/R/sweave/unsuccessful.sweave.log
In the above example I am not using the kerkis font-package. When I
am,  I am getting no output at all, and a latex error of "Corrupted
NFSS tables".

I can understand that the whole problem is an encoding issue, but what
should I do in order to use Sweave with greek text flawlessly?
One solution is to edit the .tex file produced by Sweave, but this
solution is by far counter-productive.



Thank you very much in advance,



Constantine Tsardounis
http://www.costis.name



PS.: I am having no problem to run Sweave in 100% English texts.
I postscript the following files:
* unsuccessful.sweave.Rnw
* unsuccessful.sweave.tex
* successful.greek.tex


########################
unsuccessful.sweave.Rnw
########################
\documentclass[a4paper,12pt]{book}
\usepackage[greek]{babel}
\usepackage[iso-8859-7]{inputenc}
% \usepackage{kerkis}
\begin{document}
\section{\textlatin{Sweave}}
\subsection{\textlatin{in Greek}}
???? ???, ???? ????? ????????.

<<>>=
data(airquality)
library(ctest)
kruskal.test(Ozone ~ Month, data = airquality)
@

\subsection{\textlatin{in English}}
\textlatin{Hello to all, now I am writing in English.}
\end{document}


########################
unsuccessful.sweave.tex
########################
\documentclass[a4paper,12pt]{book}
\usepackage[greek]{babel}
\usepackage[iso-8859-7]{inputenc}
% \usepackage{kerkis}
\usepackage{/usr/share/R/share/texmf/Sweave}
\begin{document}
\section{\textlatin{Sweave}}
\subsection{\textlatin{in Greek}}
?????(c)?' ???'??, ???????' ?????????? ???????????(c)????.

\begin{Schunk}
\begin{Sinput}
> data(airquality)
> library(ctest)
> kruskal.test(Ozone ~ Month, data = airquality)
\end{Sinput}
\begin{Soutput}
	Kruskal-Wallis rank sum test

data:  Ozone by Month
Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value = 6.901e-06
\end{Soutput}
\end{Schunk}

\subsection{\textlatin{in English}}
\textlatin{Hello to all, now I am writing in English.}
\end{document}


########################
successful.greek.tex
########################
\documentclass[a4paper,12pt]{book}
\usepackage[greek]{babel}
\usepackage[iso-8859-7]{inputenc}
\usepackage{kerkis}
\begin{document}
\section{\textlatin{Sweave}}
\subsection{\textlatin{in Greek}}
???? ???, ???? ????? ????????.

\subsection{\textlatin{in English}}
\textlatin{Hello to all, now I am writing in English.}
\end{document}



------------------------------

Message: 48
Date: Wed, 28 Jan 2009 12:17:05 -0500
From: Ravi Varadhan <rvaradhan at jhmi.edu>
Subject: Re: [R] StepAIC with coxph
To: Michele Santacatterina <miksanta at gmail.com>
Cc: R-help at r-project.org
Message-ID: <f6b1f699771b.49804cc1 at johnshopkins.edu>
Content-Type: text/plain; charset=iso-8859-1

Michele,

This error means that some of the variables in your formula have missing values, and hence when these terms or added/dropped you have a different sample size.  Hence, the AIC cannot be compared between different models.  The solution is to create a compelete-data dataframe for the largest model, i.e none of the variables in the largest model should have any missing values.  Then run stepAIC on this dataframe. 

Best,
Ravi.

____________________________________________________________________

Ravi Varadhan, Ph.D.
Assistant Professor,
Division of Geriatric Medicine and Gerontology
School of Medicine
Johns Hopkins University

Ph. (410) 502-2619
email: rvaradhan at jhmi.edu


----- Original Message -----
From: Michele Santacatterina <miksanta at gmail.com>
Date: Wednesday, January 28, 2009 9:51 am
Subject: [R] StepAIC with coxph
To: R-help at r-project.org


> Hi,
>  
>  i'm trying to apply StepAIC with coxph...but i have the same error:
>  
>  stepAIC(fitBMT)
>  Start:  AIC=327.77
>  Surv(TEMPO,morto==1) ? VOD + SESSO + ETA + ........
>  
>  Error in dropterm.default(fit,scope$drop, scale=scale,trace=max(0,  :
>  number of rows in use has changed: remove missing values?
>  
>  anybody know this error??
>  
>  Thanks.
>  
>  Michele
>  
>  	[[alternative HTML version deleted]]
>   
> ______________________________________________
>  R-help at r-project.org mailing list
>  
>  PLEASE do read the posting guide 
>  and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 49
Date: Wed, 28 Jan 2009 17:30:02 +0000
From: Simon Wood <s.wood at bath.ac.uk>
Subject: Re: [R] Repeated measures design for GAM? - corrected
	question...
To: r-help at r-project.org
Message-ID: <200901281730.02975.s.wood at bath.ac.uk>
Content-Type: text/plain;  charset="iso-8859-1"

`gamm' in package `mgcv' will let you specify random effects as part of a 
generalized additive mixed model, but I must admit that I'm a bit confused 
about what `Bird_abundance' is here, and how it differs from `Count'.

best,
Simon

On Wednesday 28 January 2009 17:09, Strubbe Diederik wrote:
> Dear all,
>
> I have a question on the use of GAM with repeated measures. My dataset is
> as follows: - a number of study areas where bird abundance has been
> determined. Counts have been performed in 3 consecutive years and there
> were 2 counts per year (i.e. in total 6 counts). - a number of
> environmental predictors that do not change over year Xi). When using a
> GLM, a repeated measures design would like: (for example)
>
> lme(Bird_abundance = study_area + count +year+ X1 + X2 + X3,random =
> ~count|study_area).
>
> However, I have found no analogue design for a GAM. For now, I have
> averaged my bird abundances but I wondered whether a more subtle and
> elegant strategy exists...?
>
> Many thanks,
>
>
> Diederik
>
> Diederik Strubbe
> Evolutionary Ecology Group
> Department of Biology, University of Antwerp
> Universiteitsplein 1
> B-2610 Antwerp, Belgium
> http://webhost.ua.ac.be/deco
> tel : 32 3 820 23 85
>
>
> 	[[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html and provide commented, minimal,
> self-contained, reproducible code.

-- 
> Simon Wood, Mathematical Sciences, University of Bath, Bath, BA2 7AY UK
> +44 1225 386603  www.maths.bath.ac.uk/~sw283



------------------------------

Message: 50
Date: Wed, 28 Jan 2009 09:51:29 -0800
From: Dr Carbon <drcarbon at gmail.com>
Subject: [R] gls prediction using the correlation structure in nlme
To: r-help at r-project.org, jcp at research.bell-labs.com,
	bates at stat.wisc.edu
Message-ID:
	<e89bb7ac0901280951j725ef225r87965bfd08595b71 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

How does one coerce predict.gls to incorporate the fitted correlation
structure from the gls object into predictions? In the example below
the AR(1) process with phi=0.545 is not used with predict.gls. Is
there another function that does this? I'm going to want to fit a few
dozen models varying in order from AR(1) to AR(3) and would like to
look at the fits with the correlation structure included.

Thanks in advance.

-JC

PS I am including the package maintainers on this post - does this
constitute a maintainer-specific question in r-help etiquette?

# example
set.seed(123)
x <- arima.sim(list(order = c(1,0,0), ar = 0.7), n = 100)
y <-x + arima.sim(list(order = c(1,0,0), ar = 0.7), n = 100)
x <- c(x)
y <- c(y)
lm1 <- lm(y~x)
ar(residuals(lm1)) # indicates an ar1 model
cs1 <- corARMA(p=1)
fm1 <- gls(y~x,corr=cs1)
summary(fm1)
# get fits
fits <- predict(fm1)
# use coef to get fits
fits2 <- coef(fm1)[1] + (coef(fm1)[2] * x)
plot(fits,fits2)



------------------------------

Message: 51
Date: Mon, 26 Jan 2009 14:55:21 +0100
From: "ARDIA David" <david.ardia at unifr.ch>
Subject: [R] [R-pkgs] AdMit version 1-01.01
To: <r-packages at r-project.org>
Message-ID:
	<2AA9A291D7760C40B00A75A149DB5D37062033 at EXCHANGE4.unifr.ch>
Content-Type: text/plain; charset="us-ascii"

Dear all,

The new version of AdMit (version 1.01-01) is now available from CRAN.

SUMMARY
The package provides functions to perform the fitting of an adaptive
mixture of Student-t distributions to a target density through its 
kernel function. The mixture approximation can then be used as the importance
density in importance sampling or as the candidate density in the
Metropolis-Hastings algorithm to obtain quantities of interest for 
the target density itself. We believe that this approach may be applicable in
many fields of research and hope that the R package AdMit will be
fruitful for many researchers like econometricians or applied statisticians.


MODIFICATIONS
o change in AdMit.R to deal with convergence problems for simple cases.

o the documentation file has been improved (thanks to Achim Zeilis for
comments).

o a package vignette has been added.

o a paper describing the package in detail has been published in  the
Journal of Statistical Software: http://www.jstatsoft.org/v29/i03.

Abstract:
This paper presents the R package AdMit which provides functions to
approximate and sample from a certain target distribution given only a
kernel of the target density function. The core algorithm consists in
the function AdMit which fits an adaptive mixture of Student-t
distributions to the density of interest via its kernel function. Then,
importance sampling or the independence chain Metropolis-Hastings
algorithm are used to obtain quantities of interest for the target
density, using the fitted mixture as the importance or candidate
density. The estimation procedure is fully automatic and thus avoids the
time-consuming and difficult task of tuning a sampling algorithm. The
relevance of the package is shown in two examples. The first aims at
illustrating in detail the use of the functions provided by the
package in a bivariate bimodal distribution. The second shows the
relevance of the adaptive mixture procedure through the Bayesian
estimation of a mixture of ARCH model fitted to foreign exchange
log-returns data. The methodology is compared to standard cases of
importance sampling and the Metropolis-Hastings algorithm using a naive
candidate and with the Griddy-Gibbs approach.

o creation of /doc folder with AdMitJSS.txt and AdMitRnews.txt files
(the R codes used for JSS and Rnews papers).

o CITATION file simplified.

o 'coda' package is now Suggests


REFERENCES
Ardia D, Hoogerheide LF, van Dijk HK (2008). AdMit: Adaptive Mixture of
Student-t Distributions in R. R package version 1.01-01.
URL http://CRAN.R-project.org/package=AdMit.

Ardia D, Hoogerheide LF, van Dijk HK (2009). Adaptive Mixture of
Student-t Distributions as a Flexible Candidate Distribution for
Efficient Simulation: The R Package AdMit. Journal of Statistical
Software, 29(3), 1-32.
URL http://www.jstatsoft.org/v29/i03/.

Hoogerheide LF (2006). Essays on Neural Network Sampling Methods and
Instrumental Variables. Ph.D. thesis, Tinbergen Institute, Erasmus
University Rotterdam. Book nr. 379 of the Tinbergen Institute Research
Series.

Hoogerheide LF, Kaashoek JF, van Dijk HK (2007). On the Shape of
Posterior Densities and Credible Sets in Instrumental Variable
Regression Models with Reduced Rank: An Application of Flexible Sampling
Methods using Neural Networks.
Journal of Econometrics, 139(1), 154-180. doi:10.1016/j.jeconom.2006.06.009.

Hoogerheide LF, van Dijk HK (2008a). Bayesian Forecasting of Value at
Risk and Expected Shorfall Using Adaptive Importance Sampling. Technical
Report 2008-092/4, Tinbergen Institute, Erasmus University Rotterdam.
URL http://www.tinbergen.nl/ discussionpapers/08092.pdf.

Hoogerheide LF, van Dijk HK (2008b). Possibly Ill-Behaved Posteriors in
Econometric Models: On the Connection Between Model Structures,
Non-Elliptical Credible Sets and Neural Network Simulation Techniques."
Technical Report 2008-036/4, Tinbergen Institute, Erasmus University
Rotterdam.
URL http://www.tinbergen.nl/discussionpapers/08036.pdf.

Best regards,

David Ardia (package's maintainer)
Lennart F. Hoogerheide
Herman K. van Dijk

	[[alternative HTML version deleted]]

_______________________________________________
R-packages mailing list
R-packages at r-project.org
https://stat.ethz.ch/mailman/listinfo/r-packages



------------------------------

Message: 52
Date: Wed, 28 Jan 2009 11:20:08 -0700
From: Greg Snow <Greg.Snow at imail.org>
Subject: Re: [R] help with plot layout
To: "mauede at alice.it" <mauede at alice.it>, "r-help at stat.math.ethz.ch"
	<r-help at stat.math.ethz.ch>
Cc: "gunter.berton at gene.com" <gunter.berton at gene.com>
Message-ID:
	<B37C0A15B8FB3C468B5BC7EBC7DA14CC61C939DBFA at LP-EXMBVS10.CO.IHC.COM>
Content-Type: text/plain; charset="us-ascii"

We don't have your data, so we cannot reproduce what you are doing and the plot was stripped off before we saw it (only certain types of attachments are allowed, and some e-mail programs don't give the correct information about attachments so even those types can be stripped if it is not clear what they are).

Here are some possible hints that may help (if I have guessed correctly about what you are trying to do).

Read the help page for par, looking at the information on margins and outer margins, this can be used to give you more room for your titles (also the xpd argument if you are placing things outside the plot area).  Also look at the various cex arguments for controlling sizes.

Try using mtext instead of text to manually add titles or other text in the margins.

Sometimes using the outer margins works better than using the regular margins (sometimes not).

The text function uses the user coordinates of the current plot, the functions grconvertX and grconvertY can be used to convert between the different coordinate systems.

Hope this helps,

-- 
Gregory (Greg) L. Snow Ph.D.
Statistical Data Center
Intermountain Healthcare
greg.snow at imail.org
801.408.8111


> -----Original Message-----
> From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-
> project.org] On Behalf Of mauede at alice.it
> Sent: Wednesday, January 28, 2009 8:52 AM
> To: r-help at stat.math.ethz.ch
> Cc: gunter.berton at gene.com
> Subject: [R] help with plot layout
> 
> It takes a lot of sweat to generate a composite plot with R ...  sigh.
> I though I was almost done when I met the umpteenth hurdle. I cannot
> place a nice title on the 2nd plot (raw signal)
> on the layout. I do not have control on where either the "main" option
> of "plot" function, or "title", place the text
> string which keeps dysplaying chopped from above. I also tried "text",
> changing many times the string coordinates, but could not see any text
> anywhere on the canvas .
> By the way, since the layout breaks the canvas into 4 parts, are the
> text coordinates absolute (referred to the canvas) or
> relative (referred to the part) ?
> Please, find attached the generated drawing. The generating script is i
> the following.
> Thank you so much,
> Maura
> 
> ##################################################################
>  WavMaxNumCoef <- 30
>  setwd("C:/Documents and Settings/Monville/SpAn-Tests/16440-Raw-Dir")
> 
>  xx <- read.table("Interp-Amp-PhasePlus16440.txt",header=TRUE, sep=" ")
>  NumCycles <- max(xx[,"cycle"])
>  TickPos <- vector(length=NumCycles)
>  TickCoord <- vector(length=NumCycles)
>  for(i in 1:NumCycles) {
>     TickPos[i] <- xx[min(which(xx[,"cycle"] == i)),1]
>  }
> 
>  aa <- read.table( "16440-Alpha.txt" )
>  xaa <- seq(1:length(t(aa)))
> 
>  vv <- read.table("16440-Vanishing-Moments")
>  vvLab <- seq(1,WavMaxNumCoef/2,1)
>  vvCounts <- vector(length=WavMaxNumCoef/2)
>  for(k in 1:(WavMaxNumCoef/2)) {
>     vvCounts[k] <- length(which(vv[] == k))
>  }
>  yyLab <- seq(1,length(t(vv)),2)
> 
>  bb <- read.table("16440-Length")
>  bbLab <- seq(min(bb),max(bb),1)
>  bb <- sort(t(bb))
>  bbCounts <- as.numeric(vector(length=(max(bb)-min(bb)+1)))
>  for(k in 1:length(bbCounts)) {
>     bbCounts[k] <- length(which(bb[] == (k +min(bb) -1)))
>  }
>  zzLab <- seq(1,max(bbCounts),1)
> 
> # DEFINE LAYOUT
>  x11(width=22,height=14)
>  nf <- layout(matrix(c(1,3,2,4),2,2,byrow=TRUE), c(3,1), c(2,2),FALSE)
>  layout.show(nf)
> 
> # PLOT DONOHO ALPHA
>  par(mar=c(10,4,2,5),xaxt="n",cex.axis=1,pty="m")
>  plot(xaa,t(aa),type="h")
>  par (xaxt="s",xaxp=c(0,95.964,24),xaxs="i")
> 
> axis(1,at=TickPos,labels=as.character(TickPos),col="red",col.axis="red"
> ,font.axis=1)
> 
> # PLOT RAW SIGNAL
>  par(mar=c(3,4,0,5),xaxt="n",cex.axis=1,pty="m")
>  plot(xx[,1],xx[,2],pch=3,type="l",frame.plot=FALSE,xpd=TRUE)
>  title("Raw Signal 16440",cex.main=1.0,font=2)
>  par (xaxt="s",xaxp=c(0,95.964,24),xaxs="i")
> 
> axis(1,at=TickPos,labels=as.character(TickPos),col="red",col.axis="red"
> , font.axis=1)
> 
> # PLOT VANISHING MOMENT DISTRIBUTION
>  par(mar=c(1,0,2,3),xaxt="n",yaxt="n",cex.axis=0.7,pty="m")
>  barplot(vvCounts,width=1,space=0,horiz=TRUE,axes=FALSE)
>  par(xaxt="s",yaxt="s",crt=180,srt=270,adj=1,las=3,xpd=TRUE)
>  text(x=25.5,y=15.3,pos=4,"Wavelet Vanishing Moments
> Distribution",cex=1.0,font=2)
>  axis(2,at=vvLab-
> 1,labels=as.character(vvLab),col="red",col.axis="red",font.axis=1,xpd=T
> RUE,
>       cex.lab=1)
>  axis(3,at=yyLab-
> 1,labels=as.character(yyLab),col="red",col.axis="red",font.axis=1,xpd=T
> RUE,
>       cex.lab=0.8,cex.axis=0.8)
> 
> # PLOT CYCLES LENGTH
>  par(mar=c(0,0,1,3),xaxt="n",yaxt="n",cex.axis=1)
>  barplot(bbCounts,width=1,axes=FALSE,space=0,horiz=TRUE)
> 
> par(xaxt="s",yaxt="s",crt=180,srt=270,adj=1,las=3,cex.lab=0.1,xpd=TRUE)
>  text(x=15.5,y=65.3,pos=4,"Cycles Length Distribution",cex=1.0,font=2)
>  axis(2,at=as.numeric(bbLab)-
> 41,labels=bbLab,col="red",col.axis="red",font.axis=1,
>       lab=c(10,10,15),cex.lab=0.7,cex.axis=0.6)
> 
> axis(3,at=zzLab,labels=as.character(zzLab),col="red",col.axis="red",fon
> t.axis=1,xpd=TRUE,
>       cex.lab=1,cex.axis=0.8)
> 
> 
> # cords <-locator(n=3)
> 
> 
> 
> 
> 
> 
> e tutti i telefonini TIM!
> Vai su



------------------------------

Message: 53
Date: Wed, 28 Jan 2009 13:25:32 -0500 (EST)
From: Nidhi Kohli <nidhik at umd.edu>
Subject: [R] stack data sets
To: r-help at stat.math.ethz.ch, r-help at r-project.org
Message-ID: <20090128132532.BIX30409 at po3.mail.umd.edu>
Content-Type: text/plain; charset=us-ascii

Hi All,

I'm generating 10 different data sets with 1 and 0 in a matrix form and writing the output in separate files. Now I need to stack all these data sets in one vector and I know that stack only operates on list or data frame however I got these data sets by converting list to a matrix so can't go backwards now. Is there a way i can still use Stack?

Please see the program:

#Importing psych & ltm library for all the simulation related functions
library(ltm)
library(psych)
# Settting the working directory path to C:/NCME
path="C:/NCME"
setwd(path)
#IRT Data Simulation Routine#
n.exams = 500   #Sets number of examinees to be generated#
n.items = 20     #Sets number of items to be generated#
#The following intialize empty (NA) vectors or matrices#
beta.values = rep(NA,n.items)
resp.prob=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items)
Observed_Scores=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items)
str(Observed_Scores)
for (k in 1:10)
{
#Setting the starting point for seed
set.seed(k)
#filling item parameters into beta.values
beta.values = runif(n.items,-2,2)
#Calculating Threshold
thresh.values = .5 * beta.values

#Using the function to generate the Parallel Model CTT data
GenData <- congeneric.sim(N=500, loads = rep(.5,20), err=NULL, short = FALSE)

#Storing Observed Score in a variable
Observed_Scores = GenData[[3]]
#Exporting Observed scores to output file
ObservedScores_Data <- paste("Observed_Scores_",k,".dat")
write.table(Observed_Scores,ObservedScores_Data,row.name=FALSE,col.name=FALSE)
Zero = 0
One = 1
for (t in 1:20)
{
for (s in 1:500)
{
if (Observed_Scores[s,t]<= thresh.values[t])
resp.prob[s,t] = Zero
else
resp.prob[s,t] = One

}
}
ResponseData <- paste("ResponseMatrix_",k,".dat")
ThreshData <- paste("Threshold_",k,".dat")
write.table(resp.prob,ResponseData,row.name=FALSE,col.name=FALSE)
write.table(thresh.values,ThreshData,row.name=FALSE,col.name=FALSE)

#####STACKING ALL THE OUTPUTS#########
CommonFile <- stack(resp.prob)
######################################

#Rounding upto 2 decimal places while showing the correlation matrix
round(cor(GenData$observed),2)
#Factor Score
FactorScore=factor.pa(GenData$observed,1,scores = "TRUE")
round(cor(FactorScore$scores,GenData$latent),2)
filename_fs <- paste("FactorScore_",k,".dat")
#Exporting Factor Scores to Output file
write.table(FactorScore$scores,filename_fs,col.name=FALSE, row.name=FALSE)
}


Thank you
Nidhi



------------------------------

Message: 54
Date: Wed, 28 Jan 2009 13:25:32 -0500 (EST)
From: Nidhi Kohli <nidhik at umd.edu>
Subject: [R] stack data sets
To: r-help at stat.math.ethz.ch, r-help at r-project.org
Message-ID: <20090128132532.BIX30409 at po3.mail.umd.edu>
Content-Type: text/plain; charset=us-ascii

Hi All,

I'm generating 10 different data sets with 1 and 0 in a matrix form and writing the output in separate files. Now I need to stack all these data sets in one vector and I know that stack only operates on list or data frame however I got these data sets by converting list to a matrix so can't go backwards now. Is there a way i can still use Stack?

Please see the program:

#Importing psych & ltm library for all the simulation related functions
library(ltm)
library(psych)
# Settting the working directory path to C:/NCME
path="C:/NCME"
setwd(path)
#IRT Data Simulation Routine#
n.exams = 500   #Sets number of examinees to be generated#
n.items = 20     #Sets number of items to be generated#
#The following intialize empty (NA) vectors or matrices#
beta.values = rep(NA,n.items)
resp.prob=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items)
Observed_Scores=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items)
str(Observed_Scores)
for (k in 1:10)
{
#Setting the starting point for seed
set.seed(k)
#filling item parameters into beta.values
beta.values = runif(n.items,-2,2)
#Calculating Threshold
thresh.values = .5 * beta.values

#Using the function to generate the Parallel Model CTT data
GenData <- congeneric.sim(N=500, loads = rep(.5,20), err=NULL, short = FALSE)

#Storing Observed Score in a variable
Observed_Scores = GenData[[3]]
#Exporting Observed scores to output file
ObservedScores_Data <- paste("Observed_Scores_",k,".dat")
write.table(Observed_Scores,ObservedScores_Data,row.name=FALSE,col.name=FALSE)
Zero = 0
One = 1
for (t in 1:20)
{
for (s in 1:500)
{
if (Observed_Scores[s,t]<= thresh.values[t])
resp.prob[s,t] = Zero
else
resp.prob[s,t] = One

}
}
ResponseData <- paste("ResponseMatrix_",k,".dat")
ThreshData <- paste("Threshold_",k,".dat")
write.table(resp.prob,ResponseData,row.name=FALSE,col.name=FALSE)
write.table(thresh.values,ThreshData,row.name=FALSE,col.name=FALSE)

#####STACKING ALL THE OUTPUTS#########
CommonFile <- stack(resp.prob)
######################################

#Rounding upto 2 decimal places while showing the correlation matrix
round(cor(GenData$observed),2)
#Factor Score
FactorScore=factor.pa(GenData$observed,1,scores = "TRUE")
round(cor(FactorScore$scores,GenData$latent),2)
filename_fs <- paste("FactorScore_",k,".dat")
#Exporting Factor Scores to Output file
write.table(FactorScore$scores,filename_fs,col.name=FALSE, row.name=FALSE)
}


Thank you
Nidhi



------------------------------

Message: 55
Date: Wed, 28 Jan 2009 18:54:27 +0000 (UTC)
From: Ben Bolker <bolker at ufl.edu>
Subject: Re: [R] constrainOptim
To: r-help at stat.math.ethz.ch
Message-ID: <loom.20090128T184853-604 at post.gmane.org>
Content-Type: text/plain; charset=us-ascii

June Wong <neptune545 <at> hotmail.com> writes:

> 
> 
> Dear R helpers
> 
> I have a question regarding the constrainOptim. 
> I'm coding the nested logit and would like to set a bound of rho to (0,1] as
an extreme value distribution
> where rho = exp(lambda)/1+exp(lambda)
> I wonder if I can do that directly in optim (say rho > 0 & <= 1) or need to
use constrainOptim
> I read the help but still don't know how to set ui and ci
> 
> Thanks,
> June
> 

  optim() can do box constraints (i.e., independent inequality
constraints on parameters): use method="L-BFGS-B" and
the lower and upper arguments to set the bounds for
each parameter (to -Inf and Inf if there are no bounds).
If you want to set bounds on rho you have to use rho as
the parameter in your model -- this is tricky if you
can't solve for rho, but in your case lambda=log(rho/(1-rho))

  Ben Bolker



------------------------------

Message: 56
Date: Wed, 28 Jan 2009 18:26:57 +0100
From: julien cuisinier <j_cuisinier at hotmail.com>
Subject: [R] Saving plot into file without showing it
To: <r-help at r-project.org>
Message-ID: <COL102-W425B97D7E5E340366CB9128FC80 at phx.gbl>
Content-Type: text/plain


Hi List,


My apologies in advance if question is simplistic, I am quite new to R graphics capabilities and I could not find anything in past threads...

I use R 2.8.1 under Mac OS X, but I would preferrably have a cross platform answer as I use also R under Windows

I produce plots using R & save them in a file

e.g. below:

y <- rnorm(1000)
x <- rnorm(1000)
plot(x,y)
dev.copy2pdf()

Until there fine, it create a pdf file that is composed of my plot...My "issues" are the following:
1. If I want to produce the plot & save it directly in a pdf file without viewing it, how do I do that? 
2. Can I create several plots in a row (without showing them in Quartz or whatever other graphic device) and save them all in separate files after creation? for example a function that would save me in separate files all what is visible through dev.list()


Let's keep the example of saving in pdf format here...I do not have target file type for saving the graphics. The point is that I would have another piece of code (HTML I guess, not developed yet) fetching all the charts and presenting it nicely.


Any feedback is appreciated

Many thanks
Julien

_________________________________________________________________

 charlas.

	[[alternative HTML version deleted]]



------------------------------

Message: 57
Date: Wed, 28 Jan 2009 08:48:16 -0800 (PST)
From: Frank Zhang <frankyuzhang at yahoo.com>
Subject: [R] Get median of each column
To: r-help at r-project.org
Message-ID: <724831.30195.qm at web33007.mail.mud.yahoo.com>
Content-Type: text/plain

I am new to R. How can I get column median? Thanks.Frank


      
	[[alternative HTML version deleted]]



------------------------------

Message: 58
Date: Wed, 28 Jan 2009 18:37:58 -0000
From: "Attiglah, Mama" <Mama_Attiglah at ssga.com>
Subject: [R] R compilation
To: <r-sig-finance at stat.math.ethz.ch>
Cc: r-help at r-project.org, r-sig-hpc at r-project.org,
	r-sig-db at stat.math.ethz.ch
Message-ID:
	<AD34C27D4F3A0649ACE5DB999EC62E50E050BA at LCPPW1089.corp.statestr.com>
Content-Type: text/plain;	charset="iso-8859-1"


Hi Mates, 
I have a very long R code that needs to go to production but my portfolio managers do not use R language and the software is not supported by my bank. 
Is there any way I can compile the code to an executable file and make it usable to my portfolio managers who have no knowledge at all of R? 

Thanks 

Mama 
 ----- 
Mama Attiglah, PhD
Quantitative Strategist
Liability Driven Investment 
State Street Global Advisors 
25 Bank Street, London E14 5NU 
+44(0)20 7698 6290 (Direct Line)
+44 (0)207 004 2968 (Direct Fax) 
Authorised and regulated by the Financial Services Authority.
State Street Global Advisors Limited, a company registered in England with company number 2509928
and VAT number 5576591 81 and whose registered office is...{{dropped:12}}



------------------------------

Message: 59
Date: Wed, 28 Jan 2009 14:38:15 -0500
From: jim holtman <jholtman at gmail.com>
Subject: Re: [R] Get median of each column

Cc: r-help at r-project.org
Message-ID:
	<644e1f320901281138m7935f39cr77e92d9ccb67b35b at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

?apply

> x <- matrix(1:25,5)
> x
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    6   11   16   21
[2,]    2    7   12   17   22
[3,]    3    8   13   18   23
[4,]    4    9   14   19   24
[5,]    5   10   15   20   25
> apply(x, 2, median)
[1]  3  8 13 18 23
>



wrote:
> I am new to R. How can I get column median? Thanks.Frank
>
>
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?



------------------------------

Message: 60
Date: Wed, 28 Jan 2009 14:39:40 -0500
From: jim holtman <jholtman at gmail.com>
Subject: Re: [R] Saving plot into file without showing it
To: julien cuisinier <j_cuisinier at hotmail.com>
Cc: r-help at r-project.org
Message-ID:
	<644e1f320901281139h134ba472nb3673fddbfc79e05 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

pdf("yourFile.pdf")
plot(1)
plot(2)
plot(3)
.....
dev.off()

On Wed, Jan 28, 2009 at 12:26 PM, julien cuisinier
<j_cuisinier at hotmail.com> wrote:
>
> Hi List,
>
>
> My apologies in advance if question is simplistic, I am quite new to R graphics capabilities and I could not find anything in past threads...
>
> I use R 2.8.1 under Mac OS X, but I would preferrably have a cross platform answer as I use also R under Windows
>
> I produce plots using R & save them in a file
>
> e.g. below:
>
> y <- rnorm(1000)
> x <- rnorm(1000)
> plot(x,y)
> dev.copy2pdf()
>
> Until there fine, it create a pdf file that is composed of my plot...My "issues" are the following:
> 1. If I want to produce the plot & save it directly in a pdf file without viewing it, how do I do that?
> 2. Can I create several plots in a row (without showing them in Quartz or whatever other graphic device) and save them all in separate files after creation? for example a function that would save me in separate files all what is visible through dev.list()
>
> Let's keep the example of saving in pdf format here...I do not have target file type for saving the graphics. The point is that I would have another piece of code (HTML I guess, not developed yet) fetching all the charts and presenting it nicely.
>
>
> Any feedback is appreciated
>
> Many thanks
> Julien
>
> _________________________________________________________________
>
>  charlas.
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?



------------------------------

Message: 61
Date: Wed, 28 Jan 2009 20:39:09 +0100
From: Stephan Kolassa <Stephan.Kolassa at gmx.de>
Subject: Re: [R] Get median of each column

Cc: "r-help at r-project.org" <r-help at r-project.org>
Message-ID: <4980B45D.4000204 at gmx.de>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Assuming your data are in a data.frame called dataset,

apply(dataset,2,median)

should work. Look at

?apply

HTH,
Stephan


Frank Zhang schrieb:
> I am new to R. How can I get column median? Thanks.Frank
> 
> 
>       
> 	[[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



------------------------------

Message: 62
Date: Wed, 28 Jan 2009 20:40:33 +0100
From: Stephan Kolassa <Stephan.Kolassa at gmx.de>
Subject: Re: [R] Saving plot into file without showing it
To: julien cuisinier <j_cuisinier at hotmail.com>
Cc: r-help at r-project.org
Message-ID: <4980B4B1.9090504 at gmx.de>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Try

pdf("foo.pdf")
   plot(x)
dev.off()

Other possibilities are jpeg(), tiff(), postscript() etc.

HTH,
Stephan

julien cuisinier schrieb:
> Hi List,
>  
>  
> My apologies in advance if question is simplistic, I am quite new to R graphics capabilities and I could not find anything in past threads...
>  
> I use R 2.8.1 under Mac OS X, but I would preferrably have a cross platform answer as I use also R under Windows
>  
> I produce plots using R & save them in a file
>  
> e.g. below:
>  
> y <- rnorm(1000)
> x <- rnorm(1000)
> plot(x,y)
> dev.copy2pdf()
>  
> Until there fine, it create a pdf file that is composed of my plot...My "issues" are the following:
> 1. If I want to produce the plot & save it directly in a pdf file without viewing it, how do I do that? 
> 2. Can I create several plots in a row (without showing them in Quartz or whatever other graphic device) and save them all in separate files after creation? for example a function that would save me in separate files all what is visible through dev.list()
>  
> Let's keep the example of saving in pdf format here...I do not have target file type for saving the graphics. The point is that I would have another piece of code (HTML I guess, not developed yet) fetching all the charts and presenting it nicely.
>  
>  
> Any feedback is appreciated
>  
> Many thanks
> Julien
>  
> _________________________________________________________________
> 
>  charlas.
> 
> 	[[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



------------------------------

Message: 63
Date: Wed, 28 Jan 2009 20:44:53 +0100
From: "Strubbe Diederik" <diederik.strubbe at ua.ac.be>
Subject: Re: [R] Repeated measures design for GAM? - corrected
	question...
To: <r-help at R-project.org>
Message-ID:
	<C9854550FEF14846A136100B3EC52F73B6B5AF at xmail05.ad.ua.ac.be>
Content-Type: text/plain

Dear Simon,
Many thanks for pointing me to the GAMM! For clarification, Bird_abundance are breeding densities ( e.g. 1.25 BP/ha, 2.20 BP/ha,...) and count is just the actual survey(e.g. first_survey,...). The dataset looks like
Bird_abundance	Study_area	YEAR	COUNT	X1	X2	X3	X4 
0.15	area_1	2004	first_survey	…	…	…	…
1.26	area_1	2004	second_survey	…	…	…	…
2.47	area_1	2005	third_survey	…	…	…	…
0.00	area_1	2005	fourth_survey	…	…	…	…
0.23	area_1	2006	fifht_survey	…	…	…	…
2.64	area_1	2006	sixth_survey	…	…	…	…
4.14	area_2	2004	first_survey	…	…	…	…
5.00	area_2	2004	second_survey	…	…	…	…
6.80	area_2	2005	third_survey	…	…	…	…
0.15	area_2	2005	fourth_survey	…	…	…	…
0.25	area_2	2006	fifht_survey	…	…	…	…
2.36	area_2	2006	sixth_survey	…	…	…	…
2.59	area_3	2004	first_survey	…	…	…	…
6.31	area_3	2004	second_survey	…	…	…	…
0.15	area_3	2005	third_survey	…	…	…	…
2.85	area_3	2005	fourth_survey	…	…	…	…
2.48	area_3	2006	fifht_survey	…	…	…	…
1.23	area_3	2006	sixth_survey	…	…	…	…
…	…	…	…	…	…	…	…

Am I correct in assuming the following is a valid syntax for this repeated measures design?:

model <-gamm(Bird_abundance ~ YEAR + s(X1)+ s(X2)+ s(X3)+ s(X4),random=list(count=~1,park=~1))

best wishes and thanks again,

Diederik





Diederik Strubbe
Evolutionary Ecology Group
Department of Biology, University of Antwerp
Universiteitsplein 1
B-2610 Antwerp, Belgium
http://webhost.ua.ac.be/deco
tel : 32 3 820 23 85



-----Original Message-----
From: Strubbe Diederik
Sent: Wed 28-1-2009 18:09
To: r-help at R-project.org
Subject: Repeated measures design for GAM? - corrected question...

Dear all,

I have a question on the use of GAM with repeated measures. My dataset is as follows:
- a number of study areas where bird abundance has been determined. Counts have been performed in 3 consecutive years and there were 2 counts per year (i.e. in total 6 counts).
- a number of environmental predictors that do not change over year Xi).
When using a GLM, a repeated measures design would like: (for example)

lme(Bird_abundance = study_area + count +year+ X1 + X2 + X3,random = ~count|study_area).

However, I have found no analogue design for a GAM. For now, I have averaged my bird abundances but I wondered whether a more subtle and elegant strategy exists...?

Many thanks,


Diederik

Diederik Strubbe
Evolutionary Ecology Group
Department of Biology, University of Antwerp
Universiteitsplein 1
B-2610 Antwerp, Belgium
http://webhost.ua.ac.be/deco
tel : 32 3 820 23 85




	[[alternative HTML version deleted]]



------------------------------

Message: 64
Date: Thu, 29 Jan 2009 08:53:44 +1300
From: Rolf Turner <r.turner at auckland.ac.nz>
Subject: Re: [R] Get median of each column
To: Stephan Kolassa <Stephan.Kolassa at gmx.de>
Cc: "r-help at r-project.org" <r-help at r-project.org>
Message-ID: <81B1D521-D4BE-451D-BC74-38B17F9D2EBE at auckland.ac.nz>
Content-Type: text/plain; charset="US-ASCII"; format=flowed


On 29/01/2009, at 8:39 AM, Stephan Kolassa wrote:

> Assuming your data are in a data.frame called dataset,
>
> apply(dataset,2,median)
>
> should work. Look at
>
> ?apply

Note that apply() works with ***matrices***.  The foregoing code will
work, given that all columns of ``dataset'' are numeric, due to the
fact that apply will *coerce* a data frame to a matrix.

However it should always be remembered that

[[elided Yahoo spam]]

cheers,

	Rolf Turner

######################################################################
Attention:\ This e-mail message is privileged and confid...{{dropped:9}}



------------------------------

Message: 65
Date: Wed, 28 Jan 2009 21:21:07 +0100
From: Stephan Kolassa <Stephan.Kolassa at gmx.de>
Subject: Re: [R] Power analysis for MANOVA?
To: adik at ilovebacon.org
Cc: r-help at r-project.org
Message-ID: <4980BE33.3020008 at gmx.de>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Hi Adam,

first: I really don't know much about MANOVA, so I sadly can't help you 
without learning about it an Pillai's V... which I would be glad to do, 
[[elided Yahoo spam]]

Second: you seem to be doing a kind of "post-hoc power analysis", "my 
result isn't significant, perhaps that's due to low power? Let's look at 
the power of my experiment!" My impression is that "post-hoc power 
analysis" and its interpretation is, shall we say, not entirely accepted 
within the statistical community, see:

Hoenig, J. M., & Heisey, D. M. (2001, February). The abuse of power: The 
pervasive fallacy of power calculations for data analysis. The American 
Statistician, 55 (1), 1-6

And this:
http://staff.pubhealth.ku.dk/~bxc/SDC-courses/power.pdf

However, I am sure that lots of people can discuss this more competently 
than me...

Best wishes
Stephan


Adam D. I. Kramer schrieb:
> 
> On Mon, 26 Jan 2009, Stephan Kolassa wrote:
> 
>> My (and, judging from previous traffic on R-help about power analyses,
>> also some other people's) preferred approach is to simply simulate an
>> effect size you would like to detect a couple of thousand times, run your
>> proposed analysis and look how often you get significance.  In your 
>> simple
>> case, this should be quite easy.
> 
> I actually don't have much experience running monte-carlo designs like
> this...so while I'd certainly prefer a bootstrapping method like this one,
> simulating the effect size given my constraints isn't something I've done
> before.
> 
> The MANOVA procedure takes 5 dependent variables, and determines what
> combination of the variables best discriminates the two levels of my
> independent variable...then the discrimination rate is represented in the
> statistic (Pillai's V=.00019), which is then tested (F[5,18653] = 
> 0.71).  So
> coming up with a set of constraints that would produce V=.00019 given my
> data set doesn't quite sound trivial...so I'll go for the "par" library
> reference mentioned earlier before I try this.  That said, if anyone can
> refer me to a tool that will help me out (or an instruction manual for 
> RNG),
> I'd also be much obliged.
> 
> Many thanks,
> Adam
> 
> 
>>
>> HTH,
>> Stephan
>>
>>
>> Adam D. I. Kramer schrieb:
>>> Hello,
>>>
>>>     I have searched and failed for a program or script or method to
>>> conduct a power analysis for a MANOVA. My interest is a fairly simple 
>>> case
>>> of 5 dependent variables and a single two-level categorical predictor
>>> (though the categories aren't balanced).
>>>
>>>     If anybody happens to know of a script that will do this in R, I'd
>>> love to know of it! Otherwise, I'll see about writing one myself.
>>>
>>>     What I currently see is this, from help.search("power"):
>>>
>>> stats::power.anova.test
>>>                         Power calculations for balanced one-way
>>>                         analysis of variance tests
>>> stats::power.prop.test
>>>                         Power calculations two sample test for
>>>                         proportions
>>> stats::power.t.test     Power calculations for one and two sample t
>>>                         tests
>>>
>>>     Any references on power in MANOVA would also be helpful, though of
>>> course I will do my own lit search for them myself.
>>>
>>> Cordially,
>>> Adam D. I. Kramer
>>>
>>> ______________________________________________
>>> R-help at r-project.org mailing list
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide 
>>> http://www.R-project.org/posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>>
>>
>>
>



------------------------------

Message: 66
Date: Wed, 28 Jan 2009 21:28:00 +0100
From: Stephan Kolassa <Stephan.Kolassa at gmx.de>
Subject: Re: [R] Get median of each column
To: Rolf Turner <r.turner at auckland.ac.nz>
Cc: "r-help at r-project.org" <r-help at r-project.org>
Message-ID: <4980BFD0.5070301 at gmx.de>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Thank you, Rolf, for this well-deserved spanking :-)

I promise to amend my ways and think before I send in the future.

Best,
Stephan

Rolf Turner schrieb:
> 
> On 29/01/2009, at 8:39 AM, Stephan Kolassa wrote:
> 
>> Assuming your data are in a data.frame called dataset,
>>
>> apply(dataset,2,median)
>>
>> should work. Look at
>>
>> ?apply
> 
> Note that apply() works with ***matrices***.  The foregoing code will
> work, given that all columns of ``dataset'' are numeric, due to the
> fact that apply will *coerce* a data frame to a matrix.
> 
> However it should always be remembered that
> 
[[elided Yahoo spam]]
> 
> cheers,
> 
>     Rolf Turner
> 
> ######################################################################
> Attention: This e-mail message is privileged and confidential. If you 
> are not the intended recipient please delete the message and notify the 
> sender. Any views or opinions presented are solely those of the author.
> 
> This e-mail has been scanned and cleared by MailMarshal 
> www.marshalsoftware.com
> ######################################################################
>



------------------------------

Message: 67
Date: Wed, 28 Jan 2009 14:33:47 -0600
From: Kumudan <cybermails at gmail.com>
Subject: [R] Neighborhood distance calculator
To: r-help at r-project.org
Message-ID:
	<d5081b140901281233v44dca65es7ced065502379055 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Hi all,

I am new to R, hence this question. I have a set of points with X and
Y coordinates. I would like to build an R code to calculate the
distances of points within a specified neighborhood (circular range)
for each point. I would like the code to be a function, so that I can
call the function, specifying parameters (data file, distance), from
another piece of code. Also, I would like the output to be as:

output = list(array)
.........code...........
........new code.....
return(output)

Something like this--
[[1496]]
[1] 1490 1491 1492 1493 1494 1495

The most important thing, however, is that I want to run the code for
100,000+ points. The current code I have calculates the neighborhood
distances for all the points with ever point, and then selects only
those points within the specified distance parameter. This code
crashes when I have over 40,000 points. Therefore, I need to figure
out a way to preclude the step where it calculates all of the paired
distances, and rather only those points within the specified distance
parameter. Please, see below for the existing code, and a sample data.
Thanks a lot for your time and effort.

Best,
Kumudan

Kumudan Grubh
EEB Graduate student
Iowa State University

-------------------------------------------------------------------------------------------------------------------------------------------------------
#--Code--
#transform coordinates in kilometers, and redefine origin
newx=(XCOORD-min(XCOORD))/1000
newy=(YCOORD-min(YCOORD))/1000
plot(newx,newy,pch=20,xlab="X coordinate (km)",ylab="Y coordinate (km)")

#set of new locations to be used from here on
tr.locs=cbind(newx,newy)

#the functions necessary for estimation are written in an external
program. All you need to do is to run this program one. To do this,
you could "source" this code
source("D:/...../Functions_distance.R")

#define distance-based neighborhood
nb.tr=dist.neighbors(tr.locs,2)
----------------------------------------------------------------------------------------------------------------------------------------------------------
#---Function_distance.R   <- Function to calculate distance of pairs
of neighbors
#start by defining neighbors
library(spatstat)#need this to compute distances between all points in a data

dist.neighbors=function(data,distance)
#distance is set by user
{
#data has the x and y on the first two columns. Could have more than
two columns, or exactly two columns, it doesn't matter.
#produces a "list" object with a vector of the neighbors for each location
#distance defines the range within which we define neighbors
nd=length(data[,1])
nbmat=list(array)
dist=pairdist(data[,1:2])
  for(i in 1:nd){
  nbmat[[i]]=0
 	for(j in 1:nd) if((dist[i,j]<distance)&(i!=j)) nbmat[[i]]=c(nbmat[[i]],j)
 	nbmat[[i]]=nbmat[[i]][nbmat[[i]]!=0]}
return(nbmat)		
}
------------------------------------------------------------------------------------------------------------------------------------

Data
-----------------------------------------------------------------------------------
XCOORD	YCOORD
544312.87500000000	4851169.00000000000
542705.87500000000	4851165.00000000000
541068.87500000000	4851155.00000000000
537861.81250000000	4851123.00000000000
536246.81250000000	4851118.00000000000
539476.87500000000	4851116.00000000000
534612.81250000000	4851113.00000000000
533004.75000000000	4851095.00000000000
542714.87500000000	4850363.00000000000
543516.87500000000	4850360.00000000000
544319.93750000000	4850358.00000000000
541883.87500000000	4850353.00000000000
541053.87500000000	4850342.50000000000
540268.87500000000	4850326.50000000000
537866.81250000000	4850313.50000000000
538674.87500000000	4850311.50000000000
539483.87500000000	4850310.50000000000
537060.81250000000	4850310.00000000000
536255.81250000000	4850307.00000000000
535434.81250000000	4850306.00000000000
534614.81250000000	4850305.00000000000
533809.81250000000	4850297.00000000000
533004.81250000000	4850289.00000000000
542716.87500000000	4849553.50000000000
541074.87500000000	4849537.50000000000
539486.87500000000	4849508.50000000000
537867.87500000000	4849507.50000000000
536260.81250000000	4849503.50000000000
534622.81250000000	4849498.50000000000
533009.81250000000	4849483.00000000000
542718.93750000000	4848744.50000000000
543524.93750000000	4848743.50000000000
544331.93750000000	4848743.50000000000
541906.87500000000	4848738.50000000000
541095.87500000000	4848733.50000000000
540292.87500000000	4848720.50000000000
539489.87500000000	4848707.50000000000
538679.87500000000	4848704.50000000000
537869.87500000000	4848702.50000000000
536265.81250000000	4848701.50000000000
537067.87500000000	4848701.50000000000
535447.81250000000	4848697.50000000000
534630.81250000000	4848693.50000000000
533822.81250000000	4848684.50000000000
533014.81250000000	4848676.50000000000
532211.81250000000	4848663.50000000000
531409.81250000000	4848650.50000000000
542724.93750000000	4847938.50000000000
541102.87500000000	4847926.50000000000
539492.87500000000	4847906.50000000000
537874.87500000000	4847896.50000000000
536267.87500000000	4847894.50000000000
534634.81250000000	4847882.50000000000
533016.81250000000	4847869.50000000000
531414.81250000000	4847840.50000000000
544345.93750000000	4847135.50000000000
543538.93750000000	4847133.50000000000
542731.93750000000	4847132.50000000000
541920.93750000000	4847125.50000000000
541109.93750000000	4847119.50000000000
540302.87500000000	4847112.50000000000
539496.87500000000	4847105.50000000000
538688.87500000000	4847097.50000000000
537880.87500000000	4847090.50000000000
537075.87500000000	4847088.50000000000
536270.87500000000	4847087.50000000000
535454.87500000000	4847079.50000000000
534639.87500000000	4847071.50000000000
533829.81250000000	4847067.50000000000
533019.81250000000	4847063.50000000000
532219.81250000000	4847047.50000000000
531420.81250000000	4847031.50000000000
544350.93750000000	4846325.50000000000
542735.93750000000	4846319.50000000000
541112.93750000000	4846307.50000000000
539497.87500000000	4846294.50000000000
537882.87500000000	4846282.50000000000
536267.87500000000	4846277.50000000000
534638.87500000000	4846263.50000000000
533022.81250000000	4846253.50000000000
531424.81250000000	4846221.50000000000
544356.93750000000	4845516.50000000000
543547.93750000000	4845511.50000000000
542739.93750000000	4845507.50000000000
541927.93750000000	4845501.50000000000
541115.93750000000	4845495.50000000000
540307.93750000000	4845489.50000000000
539499.93750000000	4845483.50000000000
538692.93750000000	4845478.50000000000
537885.87500000000	4845474.50000000000
537075.87500000000	4845471.50000000000
536265.87500000000	4845468.50000000000
535451.87500000000	4845462.50000000000
534638.87500000000	4845456.50000000000
533831.87500000000	4845449.50000000000
533025.87500000000	4845443.50000000000
532226.81250000000	4845427.50000000000
531428.81250000000	4845412.50000000000
530621.81250000000	4845407.50000000000
529814.81250000000	4845402.50000000000
544356.93750000000	4844711.50000000000
542738.93750000000	4844704.50000000000
541123.93750000000	4844689.50000000000
539506.93750000000	4844675.50000000000
537893.93750000000	4844664.50000000000
536284.87500000000	4844654.50000000000
534641.87500000000	4844646.50000000000
533027.87500000000	4844634.50000000000
531423.87500000000	4844606.50000000000
529812.81250000000	4844600.50000000000
544357.93750000000	4843907.50000000000
543547.93750000000	4843904.50000000000
542737.93750000000	4843901.50000000000
541934.93750000000	4843892.50000000000
541132.93750000000	4843883.50000000000
540323.93750000000	4843875.50000000000
539514.93750000000	4843868.50000000000
538708.93750000000	4843861.50000000000
537902.93750000000	4843854.50000000000
537102.87500000000	4843847.50000000000
536303.87500000000	4843841.50000000000
535473.87500000000	4843838.50000000000
534644.87500000000	4843836.50000000000
533837.87500000000	4843830.50000000000
533030.87500000000	4843825.50000000000
532224.87500000000	4843813.50000000000
531419.87500000000	4843801.50000000000
530615.81250000000	4843800.50000000000
529811.81250000000	4843799.50000000000
544356.93750000000	4843106.50000000000
542737.93750000000	4843094.50000000000
541133.93750000000	4843075.50000000000
539515.93750000000	4843065.50000000000
537906.87500000000	4843047.50000000000
536303.87500000000	4843031.50000000000
534654.87500000000	4843025.50000000000
533033.87500000000	4843015.50000000000
531419.81250000000	4842993.50000000000
529808.81250000000	4842989.50000000000
544356.93750000000	4842305.50000000000
543547.93750000000	4842296.50000000000
542738.93750000000	4842287.50000000000
541936.93750000000	4842277.50000000000
541134.93750000000	4842268.50000000000
540325.93750000000	4842265.50000000000
539516.93750000000	4842262.50000000000
538713.87500000000	4842251.50000000000
537911.87500000000	4842240.50000000000
537107.87500000000	4842231.50000000000
536304.87500000000	4842222.50000000000
535484.87500000000	4842218.50000000000
534664.87500000000	4842214.50000000000
533850.87500000000	4842210.50000000000
533037.87500000000	4842206.50000000000
532228.81250000000	4842195.50000000000
531419.81250000000	4842185.50000000000
530612.81250000000	4842182.50000000000
529806.81250000000	4842179.50000000000
544356.93750000000	4841500.50000000000
542738.93750000000	4841483.50000000000
541132.93750000000	4841463.50000000000
539520.93750000000	4841454.50000000000
537913.87500000000	4841433.50000000000
536304.87500000000	4841418.50000000000
534667.87500000000	4841408.50000000000
533040.81250000000	4841393.50000000000
531425.81250000000	4841373.50000000000
529811.81250000000	4841367.50000000000
544356.93750000000	4840695.50000000000
543547.93750000000	4840687.50000000000
542739.93750000000	4840680.50000000000
541934.93750000000	4840669.50000000000
541130.93750000000	4840658.50000000000
540327.93750000000	4840652.50000000000
539525.87500000000	4840647.50000000000
538720.87500000000	4840637.50000000000
537915.87500000000	4840627.50000000000
537109.87500000000	4840621.50000000000
536304.87500000000	4840615.50000000000
535487.87500000000	4840609.50000000000
534670.87500000000	4840603.50000000000
533856.81250000000	4840591.50000000000
533043.81250000000	4840580.50000000000
532237.81250000000	4840571.50000000000
531431.81250000000	4840562.50000000000
530624.81250000000	4840559.50000000000
529817.81250000000	4840556.50000000000
544357.93750000000	4839892.50000000000
542743.93750000000	4839876.50000000000
541131.93750000000	4839852.50000000000
539528.87500000000	4839840.50000000000
537916.87500000000	4839821.50000000000
536303.87500000000	4839804.50000000000
534672.81250000000	4839794.50000000000
533050.81250000000	4839778.50000000000
531440.81250000000	4839759.50000000000
529825.81250000000	4839749.50000000000
544358.93750000000	4839089.50000000000
543552.93750000000	4839080.50000000000
542747.93750000000	4839072.50000000000
541940.87500000000	4839059.50000000000
541133.87500000000	4839046.50000000000
540332.87500000000	4839040.50000000000
539531.87500000000	4839034.50000000000
538724.87500000000	4839024.50000000000
537918.87500000000	4839015.50000000000
537110.87500000000	4839004.50000000000
536303.87500000000	4838994.50000000000
535489.81250000000	4838990.50000000000
534675.81250000000	4838986.50000000000
533866.81250000000	4838981.50000000000
533057.81250000000	4838976.50000000000
532253.81250000000	4838966.50000000000
531450.81250000000	4838957.50000000000
530642.81250000000	4838949.50000000000
529834.81250000000	4838942.50000000000
544359.93750000000	4838278.50000000000
542747.87500000000	4838263.50000000000
541137.87500000000	4838242.50000000000
539534.87500000000	4838228.50000000000
537918.87500000000	4838210.50000000000
536303.87500000000	4838187.50000000000
534680.81250000000	4838174.50000000000
533064.81250000000	4838165.50000000000
531457.81250000000	4838148.50000000000
529837.75000000000	4838137.50000000000
544360.93750000000	4837467.50000000000
543553.87500000000	4837460.50000000000
542747.87500000000	4837454.50000000000
541944.87500000000	4837446.50000000000
541142.87500000000	4837438.50000000000
540339.87500000000	4837430.50000000000
539537.87500000000	4837422.50000000000
538728.87500000000	4837413.50000000000
537919.87500000000	4837405.50000000000
537111.87500000000	4837392.50000000000
536303.81250000000	4837380.50000000000
535494.81250000000	4837371.50000000000
534685.81250000000	4837362.50000000000
533878.81250000000	4837358.50000000000
533071.81250000000	4837354.50000000000
532268.81250000000	4837347.50000000000
531465.81250000000	4837340.50000000000
530653.75000000000	4837336.50000000000
529841.75000000000	4837333.50000000000
544362.87500000000	4836662.50000000000
542744.87500000000	4836643.50000000000
541137.87500000000	4836632.50000000000
539532.87500000000	4836618.50000000000
537914.87500000000	4836595.50000000000
536301.81250000000	4836574.50000000000
534692.81250000000	4836553.50000000000
533075.81250000000	4836547.50000000000
531468.75000000000	4836535.50000000000
544365.87500000000	4835857.50000000000
544365.87500000000	4835857.50000000000
543553.87500000000	4835845.50000000000
542742.87500000000	4835833.50000000000
541937.87500000000	4835830.50000000000
541133.87500000000	4835827.50000000000
540330.87500000000	4835821.50000000000
539528.87500000000	4835815.50000000000
538718.87500000000	4835800.50000000000
537909.81250000000	4835785.50000000000
537104.81250000000	4835777.50000000000
536300.81250000000	4835769.50000000000
535499.81250000000	4835756.50000000000
534699.81250000000	4835744.50000000000
533889.81250000000	4835742.50000000000
533080.81250000000	4835740.50000000000
532275.75000000000	4835735.50000000000
531471.75000000000	4835731.50000000000
544370.87500000000	4835052.50000000000
542750.87500000000	4835025.50000000000
541144.87500000000	4835014.50000000000
539538.87500000000	4835004.50000000000
537922.81250000000	4834987.50000000000
536315.81250000000	4834974.50000000000
544376.87500000000	4834248.50000000000
543567.87500000000	4834232.50000000000
542759.87500000000	4834217.50000000000
541957.87500000000	4834209.50000000000
541156.87500000000	4834201.50000000000
540352.87500000000	4834197.50000000000
539549.87500000000	4834193.50000000000
538742.81250000000	4834191.50000000000
537936.81250000000	4834190.50000000000
537133.81250000000	4834185.50000000000
536331.81250000000	4834180.50000000000
544384.87500000000	4833445.50000000000
542774.87500000000	4833414.50000000000
541167.87500000000	4833395.50000000000
539561.81250000000	4833387.50000000000
537946.81250000000	4833385.50000000000
544392.87500000000	4832643.50000000000
543590.87500000000	4832627.50000000000
542789.87500000000	4832612.50000000000
541984.87500000000	4832600.50000000000
541179.87500000000	4832589.50000000000
540376.81250000000	4832585.50000000000
539573.81250000000	4832581.50000000000
537957.81250000000	4832580.50000000000
538765.81250000000	4832580.50000000000
544401.87500000000	4831836.50000000000
542796.87500000000	4831805.50000000000
544410.87500000000	4831029.50000000000
543607.81250000000	4831014.50000000000
542804.81250000000	4830999.50000000000
544426.81250000000	4829417.50000000000
544432.81250000000	4828612.50000000000
544439.81250000000	4827808.50000000000
544445.81250000000	4827000.50000000000
544451.81250000000	4826193.50000000000
581262.12500000000	4851357.00000000000
579658.12500000000	4851338.00000000000
574847.12500000000	4851324.00000000000
576447.12500000000	4851320.00000000000
573257.12500000000	4851317.00000000000
578046.12500000000	4851312.00000000000
570057.12500000000	4851309.00000000000
571656.12500000000	4851308.00000000000
568458.12500000000	4851294.00000000000
566851.12500000000	4851277.00000000000
565256.06250000000	4851271.00000000000
563617.06250000000	4851230.00000000000
555586.00000000000	4851224.00000000000
560412.06250000000	4851220.00000000000
562020.06250000000	4851220.00000000000
547498.93750000000	4851208.00000000000
558822.06250000000	4851206.00000000000
557185.06250000000	4851198.00000000000
553966.00000000000	4851194.00000000000
552367.00000000000	4851191.00000000000
550727.00000000000	4851184.00000000000
549115.93750000000	4851169.00000000000
545907.93750000000	4851158.00000000000
581275.12500000000	4850554.00000000000
582081.18750000000	4850551.00000000000
580473.12500000000	4850543.50000000000
579671.12500000000	4850534.00000000000
578866.12500000000	4850522.00000000000
574862.12500000000	4850519.00000000000
573268.12500000000	4850518.00000000000
574065.12500000000	4850518.00000000000
572473.12500000000	4850516.00000000000
575664.12500000000	4850516.00000000000
571679.12500000000	4850515.00000000000
570877.12500000000	4850513.00000000000
576466.12500000000	4850513.00000000000
570075.12500000000	4850512.00000000000
577263.12500000000	4850512.00000000000
578061.12500000000	4850511.00000000000
569274.12500000000	4850500.00000000000
565267.12500000000	4850489.00000000000
568473.12500000000	4850489.00000000000
566067.12500000000	4850485.00000000000
567670.12500000000	4850485.00000000000
566867.12500000000	4850482.00000000000
564447.06250000000	4850470.00000000000
563627.06250000000	4850451.00000000000
562825.06250000000	4850442.00000000000
562023.06250000000	4850434.00000000000
561219.06250000000	4850433.00000000000
560415.06250000000	4850432.00000000000
559616.06250000000	4850417.00000000000
555585.00000000000	4850415.00000000000
556381.06250000000	4850404.00000000000
558817.06250000000	4850403.00000000000
547497.93750000000	4850402.00000000000
554779.00000000000	4850399.00000000000
557997.06250000000	4850398.00000000000
557178.06250000000	4850394.00000000000
553974.00000000000	4850383.00000000000
548305.93750000000	4850382.00000000000
546706.93750000000	4850380.00000000000
553167.00000000000	4850379.00000000000
552361.00000000000	4850375.00000000000
551542.00000000000	4850371.00000000000
550723.00000000000	4850367.00000000000
549917.93750000000	4850365.00000000000
549113.93750000000	4850363.00000000000
544319.93750000000	4850358.00000000000
545117.93750000000	4850358.00000000000
545916.93750000000	4850358.00000000000
581285.18750000000	4849747.50000000000
579682.12500000000	4849730.50000000000
578075.12500000000	4849716.00000000000
571683.12500000000	4849713.00000000000
573270.12500000000	4849713.00000000000
574880.12500000000	4849712.00000000000
576482.12500000000	4849710.00000000000
570082.12500000000	4849703.00000000000
568476.12500000000	4849680.00000000000
566869.12500000000	4849678.00000000000
565265.12500000000	4849670.00000000000
563624.06250000000	4849641.00000000000
562014.06250000000	4849631.00000000000
560419.06250000000	4849626.00000000000
555591.00000000000	4849603.00000000000
558813.06250000000	4849600.00000000000
557189.06250000000	4849591.00000000000
547512.93750000000	4849587.00000000000
553980.00000000000	4849572.00000000000
552379.00000000000	4849566.00000000000
549146.93750000000	4849562.00000000000
550747.00000000000	4849559.00000000000
544325.93750000000	4849551.00000000000
545921.93750000000	4849547.00000000000
582098.18750000000	4848945.50000000000
581296.18750000000	4848941.50000000000
580495.18750000000	4848934.50000000000
579694.12500000000	4848927.50000000000
578891.12500000000	4848924.50000000000
578089.12500000000	4848921.50000000000
577294.12500000000	4848915.00000000000
571688.12500000000	4848912.00000000000
572480.12500000000	4848910.00000000000
573273.12500000000	4848908.00000000000
576499.12500000000	4848908.00000000000
574085.12500000000	4848907.00000000000
575698.12500000000	4848907.00000000000
574898.12500000000	4848906.00000000000
570888.12500000000	4848903.00000000000
570089.12500000000	4848895.00000000000
569284.12500000000	4848883.00000000000
566872.12500000000	4848875.00000000000
567675.12500000000	4848873.00000000000
568479.12500000000	4848872.00000000000
566067.12500000000	4848863.00000000000
565263.12500000000	4848851.00000000000
564442.12500000000	4848841.00000000000
563621.06250000000	4848832.00000000000
562813.06250000000	4848830.00000000000
562006.06250000000	4848829.00000000000
561214.06250000000	4848825.00000000000
560423.06250000000	4848821.00000000000
559616.06250000000	4848809.00000000000
558810.06250000000	4848798.00000000000
558005.06250000000	4848793.00000000000
555597.06250000000	4848792.00000000000
556399.06250000000	4848790.00000000000
557201.06250000000	4848789.00000000000
554791.00000000000	4848777.00000000000
547527.93750000000	4848773.00000000000
548353.93750000000	4848767.00000000000
549181.00000000000	4848762.00000000000
553986.00000000000	4848762.00000000000
553192.00000000000	4848760.00000000000
552398.00000000000	4848758.00000000000
549976.00000000000	4848757.00000000000
546727.93750000000	4848755.00000000000
551584.00000000000	4848755.00000000000
550771.00000000000	4848752.00000000000
544331.93750000000	4848743.50000000000
545129.93750000000	4848739.50000000000
545927.93750000000	4848736.50000000000
581304.18750000000	4848141.50000000000
579704.18750000000	4848128.50000000000
578099.12500000000	4848122.50000000000
576514.12500000000	4848111.50000000000
571691.12500000000	4848109.00000000000
574905.12500000000	4848106.00000000000
573278.12500000000	4848105.00000000000
570091.12500000000	4848091.00000000000
568484.12500000000	4848071.00000000000
566875.12500000000	4848065.00000000000
565260.12500000000	4848050.00000000000
563618.12500000000	4848033.00000000000
562005.06250000000	4848027.00000000000
560415.06250000000	4848025.00000000000
558817.06250000000	4847990.00000000000
555600.06250000000	4847988.00000000000
557207.06250000000	4847985.00000000000
547538.93750000000	4847963.50000000000
553994.00000000000	4847960.00000000000
549177.00000000000	4847951.00000000000
552398.00000000000	4847951.00000000000
550783.00000000000	4847949.00000000000
544338.93750000000	4847939.50000000000
545939.93750000000	4847935.50000000000
582117.18750000000	4847351.50000000000
581312.18750000000	4847341.50000000000
580513.18750000000	4847335.50000000000
579715.18750000000	4847330.50000000000
578912.18750000000	4847327.50000000000
578109.12500000000	4847324.50000000000
577319.12500000000	4847320.50000000000
576530.12500000000	4847316.50000000000
575721.12500000000	4847311.50000000000
574913.12500000000	4847306.50000000000
571694.12500000000	4847306.00000000000
572488.12500000000	4847304.00000000000
574098.12500000000	4847304.00000000000
573283.12500000000	4847302.00000000000
570893.12500000000	4847297.00000000000
570093.12500000000	4847288.00000000000
569291.12500000000	4847279.00000000000
568490.12500000000	4847271.00000000000
567684.12500000000	4847263.00000000000
566878.12500000000	4847255.00000000000
566068.12500000000	4847252.00000000000
565258.12500000000	4847250.00000000000
564436.12500000000	4847242.00000000000
563615.12500000000	4847234.00000000000
560408.06250000000	4847230.00000000000
562809.12500000000	4847229.00000000000
561206.06250000000	4847227.00000000000
562004.06250000000	4847225.00000000000
559616.06250000000	4847206.00000000000
555604.06250000000	4847184.00000000000
556409.06250000000	4847183.00000000000
558824.06250000000	4847183.00000000000
557214.06250000000	4847182.00000000000
558019.06250000000	4847182.00000000000
554803.06250000000	4847171.00000000000
554002.00000000000	4847158.00000000000
547551.00000000000	4847154.50000000000
553200.00000000000	4847151.00000000000
548362.00000000000	4847147.50000000000
550795.00000000000	4847146.00000000000
551596.00000000000	4847145.00000000000
552398.00000000000	4847145.00000000000
546751.93750000000	4847144.50000000000
549984.00000000000	4847142.50000000000
549173.00000000000	4847140.50000000000
544345.93750000000	4847135.50000000000
545148.93750000000	4847134.50000000000
545952.93750000000	4847134.50000000000
581323.18750000000	4846533.50000000000
579715.18750000000	4846521.50000000000
578112.18750000000	4846514.50000000000
576527.12500000000	4846510.50000000000
571699.12500000000	4846503.00000000000
574912.12500000000	4846502.50000000000
573294.12500000000	4846494.50000000000
570096.12500000000	4846484.00000000000
568496.12500000000	4846467.00000000000
566875.12500000000	4846448.00000000000
565251.12500000000	4846440.00000000000
563618.12500000000	4846427.00000000000
562012.06250000000	4846418.00000000000
560412.06250000000	4846401.00000000000
558834.06250000000	4846375.00000000000
557234.06250000000	4846372.00000000000
555632.06250000000	4846365.00000000000
554011.06250000000	4846350.00000000000
547566.00000000000	4846343.50000000000
552409.00000000000	4846342.00000000000
550802.00000000000	4846334.50000000000
549183.00000000000	4846333.50000000000
545957.93750000000	4846332.50000000000
582140.18750000000	4845730.50000000000
581335.18750000000	4845725.50000000000
580525.18750000000	4845719.50000000000
579716.18750000000	4845713.50000000000
578916.18750000000	4845708.50000000000
576525.12500000000	4845705.50000000000
577320.18750000000	4845704.50000000000
578116.18750000000	4845704.50000000000
575718.12500000000	4845701.50000000000
571704.12500000000	4845699.50000000000
574912.12500000000	4845698.50000000000
572504.12500000000	4845693.50000000000
574108.12500000000	4845692.50000000000
570901.12500000000	4845689.50000000000
573305.12500000000	4845687.50000000000
570099.12500000000	4845681.00000000000
569300.12500000000	4845672.00000000000
568502.12500000000	4845664.00000000000
567687.12500000000	4845653.00000000000
566873.12500000000	4845642.00000000000
566059.12500000000	4845636.00000000000
565245.12500000000	4845630.00000000000
564433.12500000000	4845625.00000000000
563622.12500000000	4845621.00000000000
562821.12500000000	4845616.00000000000
562021.12500000000	4845611.00000000000
561218.06250000000	4845591.00000000000
560416.06250000000	4845572.00000000000
559630.06250000000	4845569.00000000000
558844.06250000000	4845567.00000000000
558049.06250000000	4845564.00000000000
557255.06250000000	4845562.00000000000
556457.06250000000	4845554.00000000000
555660.06250000000	4845547.00000000000
554840.06250000000	4845544.00000000000
554021.06250000000	4845541.50000000000
553221.00000000000	4845539.50000000000
552421.00000000000	4845538.50000000000
547582.00000000000	4845532.50000000000
546773.00000000000	4845531.50000000000
551615.00000000000	4845531.50000000000
545964.00000000000	4845530.50000000000
548388.00000000000	4845529.50000000000
549194.00000000000	4845527.50000000000
550001.00000000000	4845525.50000000000
550809.00000000000	4845524.50000000000
545159.93750000000	4845523.50000000000
544356.93750000000	4845516.50000000000
581346.18750000000	4844925.50000000000
576526.18750000000	4844915.50000000000
579720.18750000000	4844914.50000000000
578115.18750000000	4844909.50000000000
574928.12500000000	4844898.50000000000
571709.12500000000	4844888.50000000000
573319.12500000000	4844886.50000000000
570102.12500000000	4844857.50000000000
568503.12500000000	4844856.50000000000
566896.12500000000	4844830.00000000000
562012.12500000000	4844826.00000000000
565276.12500000000	4844819.00000000000
563629.12500000000	4844816.00000000000
560396.06250000000	4844803.00000000000
558820.06250000000	4844781.00000000000
557234.06250000000	4844754.00000000000
555650.06250000000	4844752.50000000000
554026.06250000000	4844749.50000000000
545963.00000000000	4844748.50000000000
552433.00000000000	4844746.50000000000
547587.00000000000	4844733.50000000000
549203.00000000000	4844717.50000000000
550818.00000000000	4844702.50000000000
582163.18750000000	4844137.50000000000
576528.12500000000	4844126.50000000000
581357.18750000000	4844125.50000000000
577321.18750000000	4844120.50000000000
580540.18750000000	4844120.50000000000
578115.18750000000	4844115.50000000000
578919.18750000000	4844115.50000000000
579724.18750000000	4844115.50000000000
575736.12500000000	4844112.50000000000
574945.12500000000	4844099.50000000000
574139.12500000000	4844092.50000000000
573333.12500000000	4844086.50000000000
572523.12500000000	4844082.50000000000
571714.12500000000	4844078.50000000000
570910.12500000000	4844056.50000000000
568504.12500000000	4844049.50000000000
569305.12500000000	4844042.50000000000
562003.12500000000	4844041.00000000000
561189.06250000000	4844038.00000000000
570106.12500000000	4844035.50000000000
560376.06250000000	4844035.00000000000
567712.12500000000	4844033.50000000000
562820.12500000000	4844026.00000000000
566920.12500000000	4844018.50000000000
559586.06250000000	4844015.00000000000
566114.12500000000	4844013.00000000000
563637.12500000000	4844012.00000000000
564472.12500000000	4844010.00000000000
565308.12500000000	4844008.00000000000
558796.06250000000	4843996.00000000000
558004.06250000000	4843971.00000000000
545962.00000000000	4843967.50000000000
555640.06250000000	4843958.50000000000
554032.06250000000	4843957.50000000000
554836.06250000000	4843957.50000000000
553239.06250000000	4843955.50000000000
552446.00000000000	4843954.50000000000
556426.06250000000	4843952.50000000000
546777.00000000000	4843950.50000000000
557213.06250000000	4843946.50000000000
545160.00000000000	4843937.50000000000
547592.00000000000	4843934.50000000000
548402.00000000000	4843921.50000000000
551636.00000000000	4843917.50000000000
549213.00000000000	4843908.50000000000
544357.93750000000	4843907.50000000000
550020.00000000000	4843894.50000000000
550827.00000000000	4843881.50000000000
581372.18750000000	4843321.50000000000
576554.12500000000	4843318.50000000000
578144.12500000000	4843307.50000000000
579753.12500000000	4843307.50000000000
574958.12500000000	4843303.50000000000
573341.12500000000	4843282.50000000000
571723.12500000000	4843267.50000000000
568510.12500000000	4843239.50000000000
562005.06250000000	4843235.00000000000
570114.12500000000	4843231.50000000000
560386.06250000000	4843228.00000000000
566916.12500000000	4843211.50000000000
563643.06250000000	4843210.00000000000
565305.12500000000	4843205.00000000000
558784.06250000000	4843194.00000000000
545978.00000000000	4843161.50000000000
555639.06250000000	4843157.50000000000
552444.00000000000	4843149.50000000000
554037.00000000000	4843147.50000000000
557208.06250000000	4843137.50000000000
547616.00000000000	4843134.50000000000
549224.00000000000	4843111.50000000000
550848.00000000000	4843084.50000000000
581387.12500000000	4842517.50000000000
576581.12500000000	4842511.50000000000
575776.12500000000	4842509.50000000000
574971.12500000000	4842508.50000000000
580584.12500000000	4842508.50000000000
577377.12500000000	4842505.50000000000
579782.12500000000	4842500.50000000000
578174.12500000000	4842499.50000000000
578978.12500000000	4842499.50000000000
574160.12500000000	4842493.50000000000
573349.12500000000	4842479.50000000000
572540.12500000000	4842468.50000000000
571732.12500000000	4842457.50000000000
570927.12500000000	4842442.50000000000
568516.12500000000	4842430.50000000000
562007.06250000000	4842430.00000000000
569319.12500000000	4842429.50000000000
570122.12500000000	4842428.50000000000
561202.06250000000	4842425.00000000000
560397.06250000000	4842421.00000000000
562828.06250000000	4842419.00000000000
567714.12500000000	4842417.50000000000
563649.06250000000	4842408.00000000000
559584.06250000000	4842407.00000000000
564476.06250000000	4842405.00000000000
566913.06250000000	4842404.50000000000
566108.06250000000	4842403.50000000000
565303.06250000000	4842402.50000000000
558772.06250000000	4842393.00000000000
557987.06250000000	4842360.50000000000
555639.06250000000	4842356.50000000000
545993.93750000000	4842355.50000000000
554841.00000000000	4842347.50000000000
552442.00000000000	4842345.50000000000
546817.00000000000	4842344.50000000000
556421.06250000000	4842342.50000000000
553242.00000000000	4842341.50000000000
554043.00000000000	4842338.50000000000
547641.00000000000	4842334.50000000000
545174.93750000000	4842330.50000000000
557203.06250000000	4842329.50000000000
548438.00000000000	4842324.50000000000
551655.00000000000	4842316.50000000000
549235.00000000000	4842315.50000000000
544356.93750000000	4842305.50000000000
550052.00000000000	4842301.50000000000
550869.00000000000	4842287.50000000000
581398.12500000000	4841720.50000000000
576589.12500000000	4841709.50000000000
579794.12500000000	4841702.50000000000
574973.12500000000	4841701.50000000000
578196.12500000000	4841697.50000000000
573357.12500000000	4841672.50000000000
571748.12500000000	4841652.50000000000
568517.06250000000	4841624.50000000000
570131.06250000000	4841624.50000000000
562021.06250000000	4841618.00000000000
560402.06250000000	4841610.00000000000
563673.06250000000	4841604.00000000000
566917.06250000000	4841595.50000000000
565297.06250000000	4841593.50000000000
558787.06250000000	4841588.00000000000
555644.00000000000	4841557.50000000000
554047.00000000000	4841548.50000000000
546000.93750000000	4841545.50000000000
552442.00000000000	4841544.50000000000
557225.06250000000	4841542.50000000000
547637.93750000000	4841530.50000000000
549244.00000000000	4841505.50000000000
544356.93750000000	4841500.50000000000
550860.00000000000	4841487.50000000000
581409.12500000000	4840923.50000000000
580607.12500000000	4840914.50000000000
576597.12500000000	4840907.50000000000
579806.12500000000	4840905.50000000000
577408.12500000000	4840901.50000000000
575786.12500000000	4840900.50000000000
579012.12500000000	4840900.50000000000
578219.12500000000	4840895.50000000000
574976.12500000000	4840894.50000000000
574171.12500000000	4840879.50000000000
573366.12500000000	4840865.50000000000
572565.06250000000	4840856.50000000000
571764.06250000000	4840847.50000000000
570952.06250000000	4840834.50000000000
570140.06250000000	4840821.50000000000
569329.06250000000	4840819.50000000000
568519.06250000000	4840818.50000000000
562035.06250000000	4840806.00000000000
562866.06250000000	4840803.00000000000
567720.06250000000	4840802.50000000000
561221.06250000000	4840802.00000000000
563697.06250000000	4840800.50000000000
560407.06250000000	4840799.00000000000
564494.06250000000	4840792.50000000000
559604.06250000000	4840791.00000000000
566921.06250000000	4840787.50000000000
566106.06250000000	4840786.50000000000
565292.06250000000	4840785.50000000000
558802.06250000000	4840782.50000000000
558024.00000000000	4840769.50000000000
554051.00000000000	4840758.50000000000
554850.00000000000	4840758.50000000000
555650.00000000000	4840758.50000000000
556448.00000000000	4840757.50000000000
557247.00000000000	4840756.50000000000
553247.00000000000	4840750.50000000000
552443.00000000000	4840743.50000000000
546007.93750000000	4840735.50000000000
546820.93750000000	4840731.50000000000
547634.93750000000	4840727.50000000000
545181.93750000000	4840715.50000000000
551647.00000000000	4840715.50000000000
548443.93750000000	4840711.50000000000
549254.00000000000	4840696.50000000000
544356.93750000000	4840695.50000000000
550052.00000000000	4840692.50000000000
550851.00000000000	4840688.50000000000
581421.12500000000	4840125.50000000000
576605.12500000000	4840110.50000000000
579812.12500000000	4840104.50000000000
578218.12500000000	4840095.50000000000
574986.06250000000	4840081.50000000000
573369.06250000000	4840065.50000000000
571770.06250000000	4840047.50000000000
570151.06250000000	4840026.50000000000
568532.06250000000	4840011.50000000000
562045.06250000000	4840002.00000000000
560424.06250000000	4839997.00000000000
563702.06250000000	4839992.50000000000
566925.06250000000	4839982.50000000000
558824.00000000000	4839981.50000000000
565306.06250000000	4839976.50000000000
557250.00000000000	4839959.50000000000
554044.00000000000	4839949.50000000000
555645.00000000000	4839947.50000000000
552435.00000000000	4839938.50000000000
546011.93750000000	4839931.50000000000
547633.93750000000	4839915.50000000000
549246.93750000000	4839900.50000000000
544357.93750000000	4839892.50000000000
550840.00000000000	4839889.50000000000
581434.12500000000	4839328.50000000000
580626.12500000000	4839316.50000000000
576613.06250000000	4839314.50000000000
577415.06250000000	4839304.50000000000
579819.12500000000	4839304.50000000000
579018.06250000000	4839299.50000000000
578218.06250000000	4839295.50000000000
575805.06250000000	4839291.50000000000
574997.06250000000	4839269.50000000000
574185.06250000000	4839267.50000000000
573373.06250000000	4839265.50000000000
572575.06250000000	4839256.50000000000
571777.06250000000	4839247.50000000000
570970.06250000000	4839239.50000000000
570163.06250000000	4839231.50000000000
569354.06250000000	4839218.50000000000
568546.06250000000	4839205.50000000000
562055.06250000000	4839197.50000000000
561248.00000000000	4839195.50000000000
560441.00000000000	4839195.00000000000
562881.06250000000	4839191.50000000000
567738.06250000000	4839191.50000000000
559643.00000000000	4839187.50000000000
563707.06250000000	4839185.50000000000
558846.00000000000	4839181.50000000000
566930.06250000000	4839177.50000000000
564513.06250000000	4839176.50000000000
566125.06250000000	4839172.50000000000
558050.00000000000	4839171.50000000000
565320.06250000000	4839167.50000000000
557254.00000000000	4839162.50000000000
556447.00000000000	4839149.50000000000
554038.00000000000	4839141.50000000000
554839.00000000000	4839139.50000000000
553232.00000000000	4839137.50000000000
555641.00000000000	4839137.50000000000
552427.00000000000	4839133.50000000000
546015.93750000000	4839128.50000000000
546823.93750000000	4839115.50000000000
551628.00000000000	4839112.50000000000
545186.93750000000	4839108.50000000000
549240.93750000000	4839105.50000000000
548436.93750000000	4839104.50000000000
547632.93750000000	4839103.50000000000
550034.93750000000	4839098.50000000000
550829.93750000000	4839091.50000000000
544358.93750000000	4839089.50000000000
581441.06250000000	4838524.50000000000
576619.06250000000	4838498.50000000000
579823.06250000000	4838498.50000000000
578221.06250000000	4838493.50000000000
575001.06250000000	4838471.50000000000
573380.06250000000	4838463.50000000000
571779.06250000000	4838449.50000000000
570172.06250000000	4838418.50000000000
568563.06250000000	4838402.50000000000
562071.00000000000	4838384.50000000000
563719.00000000000	4838382.50000000000
560457.00000000000	4838380.50000000000
566952.06250000000	4838375.50000000000
558857.00000000000	4838370.50000000000
565342.06250000000	4838356.50000000000
557260.00000000000	4838353.50000000000
554040.00000000000	4838333.50000000000
555656.00000000000	4838332.50000000000
552428.93750000000	4838320.50000000000
546008.93750000000	4838311.50000000000
547626.93750000000	4838295.50000000000
549236.93750000000	4838294.50000000000
550824.93750000000	4838290.50000000000
544359.93750000000	4838278.50000000000
581449.06250000000	4837721.50000000000
580638.06250000000	4837706.50000000000
578224.06250000000	4837692.50000000000
579025.06250000000	4837692.50000000000
579827.06250000000	4837692.50000000000
577424.06250000000	4837687.50000000000
576625.06250000000	4837682.50000000000
575815.06250000000	4837678.50000000000
575006.06250000000	4837674.50000000000
574196.06250000000	4837668.50000000000
573387.06250000000	4837662.50000000000
572584.06250000000	4837656.50000000000
571782.06250000000	4837651.50000000000
570981.06250000000	4837628.50000000000
570181.06250000000	4837606.50000000000
569380.06250000000	4837602.50000000000
568580.06250000000	4837599.50000000000
567777.00000000000	4837586.50000000000
563731.00000000000	4837579.50000000000
562909.00000000000	4837575.50000000000
566975.00000000000	4837574.50000000000
562088.00000000000	4837572.50000000000
561281.00000000000	4837569.50000000000
560474.00000000000	4837567.50000000000
559671.00000000000	4837563.50000000000
564548.00000000000	4837562.50000000000
566170.00000000000	4837560.50000000000
558868.00000000000	4837559.50000000000
558067.00000000000	4837551.50000000000
565365.00000000000	4837546.50000000000
557266.00000000000	4837544.50000000000
556469.00000000000	4837536.50000000000
555672.00000000000	4837528.50000000000
554857.00000000000	4837526.50000000000
554041.93750000000	4837525.50000000000
553236.93750000000	4837516.50000000000
552431.93750000000	4837508.50000000000
551625.93750000000	4837498.50000000000
546002.93750000000	4837494.50000000000
546811.93750000000	4837491.50000000000
550819.93750000000	4837489.50000000000
547620.93750000000	4837488.50000000000
550026.93750000000	4837486.50000000000
548426.93750000000	4837485.50000000000
549233.93750000000	4837483.50000000000
545181.93750000000	4837480.50000000000
544360.93750000000	4837467.50000000000
581448.06250000000	4836922.50000000000
579835.06250000000	4836895.50000000000
578223.06250000000	4836888.50000000000
576630.06250000000	4836881.50000000000
575004.06250000000	4836873.50000000000
573398.06250000000	4836858.50000000000
571790.06250000000	4836850.50000000000
570187.00000000000	4836823.50000000000
568582.00000000000	4836801.50000000000
563734.00000000000	4836780.50000000000
566960.00000000000	4836778.50000000000
562117.00000000000	4836769.50000000000
560503.00000000000	4836759.50000000000
565353.00000000000	4836758.50000000000
558891.00000000000	4836751.50000000000
557286.00000000000	4836736.50000000000
555682.93750000000	4836724.50000000000
554045.93750000000	4836716.50000000000
552432.93750000000	4836704.50000000000
550821.93750000000	4836689.50000000000
547610.93750000000	4836679.50000000000
549224.93750000000	4836678.50000000000
545997.93750000000	4836676.50000000000
581447.06250000000	4836123.50000000000
580645.06250000000	4836111.50000000000
579843.06250000000	4836099.50000000000
579032.06250000000	4836092.50000000000
578222.06250000000	4836085.50000000000
577429.06250000000	4836083.50000000000
576636.06250000000	4836081.50000000000
575819.06250000000	4836076.50000000000
575003.06250000000	4836072.50000000000
574206.00000000000	4836063.50000000000
573409.00000000000	4836054.50000000000
572603.00000000000	4836052.50000000000
571798.00000000000	4836050.50000000000
570995.00000000000	4836045.50000000000
570193.00000000000	4836041.50000000000
569389.00000000000	4836022.50000000000
568585.00000000000	4836004.50000000000
567765.00000000000	4835993.50000000000
566946.00000000000	4835982.50000000000
563737.00000000000	4835981.50000000000
564539.00000000000	4835976.50000000000
566144.00000000000	4835976.50000000000
562942.00000000000	4835973.50000000000
565342.00000000000	4835971.50000000000
562147.00000000000	4835966.50000000000
561340.00000000000	4835958.50000000000
560533.00000000000	4835951.50000000000
559724.00000000000	4835947.50000000000
558915.00000000000	4835943.50000000000
558111.00000000000	4835936.50000000000
557306.93750000000	4835929.50000000000
556499.93750000000	4835925.50000000000
555693.93750000000	4835921.50000000000
554871.93750000000	4835914.50000000000
554049.93750000000	4835907.50000000000
553241.93750000000	4835903.50000000000
552434.93750000000	4835900.50000000000
551628.93750000000	4835895.50000000000
550823.93750000000	4835890.50000000000
550019.93750000000	4835882.50000000000
549215.93750000000	4835874.50000000000
548408.93750000000	4835872.50000000000
547601.93750000000	4835870.50000000000
546796.87500000000	4835864.50000000000
545992.87500000000	4835859.50000000000
545178.87500000000	4835858.50000000000
544365.87500000000	4835857.50000000000
544365.87500000000	4835857.50000000000
581447.06250000000	4835324.50000000000
579842.06250000000	4835300.50000000000
578220.00000000000	4835292.50000000000
576633.00000000000	4835275.50000000000
575012.00000000000	4835267.50000000000
573413.00000000000	4835257.50000000000
571812.00000000000	4835246.50000000000
570202.00000000000	4835244.50000000000
568597.00000000000	4835212.50000000000
566971.00000000000	4835186.50000000000
565357.00000000000	4835176.50000000000
563749.00000000000	4835173.50000000000
562148.00000000000	4835143.50000000000
558920.93750000000	4835137.50000000000
557310.93750000000	4835132.50000000000
560542.00000000000	4835125.50000000000
555701.93750000000	4835118.50000000000
552442.93750000000	4835112.50000000000
554061.93750000000	4835106.50000000000
550832.93750000000	4835101.50000000000
549221.93750000000	4835089.50000000000
547605.87500000000	4835083.50000000000
545994.87500000000	4835073.50000000000
581447.06250000000	4834526.50000000000
580644.00000000000	4834514.50000000000
579842.00000000000	4834502.50000000000
579030.00000000000	4834501.50000000000
578219.00000000000	4834500.50000000000
577424.00000000000	4834484.50000000000
576630.00000000000	4834469.50000000000
575826.00000000000	4834466.50000000000
575022.00000000000	4834463.50000000000
574219.00000000000	4834461.50000000000
573417.00000000000	4834460.50000000000
572621.00000000000	4834451.50000000000
570211.00000000000	4834448.50000000000
571018.00000000000	4834445.50000000000
571826.00000000000	4834443.50000000000
569410.00000000000	4834434.50000000000
568610.00000000000	4834420.50000000000
567803.00000000000	4834405.50000000000
566997.00000000000	4834391.50000000000
566185.00000000000	4834386.50000000000
565373.00000000000	4834382.50000000000
564567.00000000000	4834374.50000000000
563762.00000000000	4834366.50000000000
562956.00000000000	4834343.50000000000
557315.93750000000	4834336.50000000000
558121.93750000000	4834333.50000000000
558927.93750000000	4834331.50000000000
556512.93750000000	4834326.50000000000
552451.93750000000	4834324.50000000000
562150.00000000000	4834321.50000000000
551646.93750000000	4834318.50000000000
555710.93750000000	4834316.50000000000
553262.93750000000	4834315.50000000000
559739.93750000000	4834315.50000000000
550842.93750000000	4834312.50000000000
554892.93750000000	4834311.50000000000
561350.93750000000	4834310.50000000000
550034.93750000000	4834308.50000000000
554074.93750000000	4834306.50000000000
549227.87500000000	4834305.50000000000
548418.87500000000	4834300.50000000000
560551.93750000000	4834299.50000000000
547609.87500000000	4834296.50000000000
546802.87500000000	4834291.50000000000
545996.87500000000	4834287.50000000000
545186.87500000000	4834267.50000000000
544376.87500000000	4834248.50000000000
581457.00000000000	4833732.50000000000
579853.00000000000	4833711.50000000000
578226.00000000000	4833700.50000000000
576636.00000000000	4833667.50000000000
575031.00000000000	4833663.50000000000
573422.00000000000	4833657.50000000000
571827.00000000000	4833650.50000000000
570217.00000000000	4833637.50000000000
568611.00000000000	4833622.50000000000
567003.00000000000	4833596.50000000000
565384.00000000000	4833583.50000000000
563763.93750000000	4833556.50000000000
557330.93750000000	4833529.50000000000
558945.93750000000	4833524.50000000000
552465.93750000000	4833518.50000000000
562156.93750000000	4833514.50000000000
555725.93750000000	4833513.50000000000
550854.87500000000	4833506.50000000000
554079.93750000000	4833505.50000000000
549239.87500000000	4833499.50000000000
560562.93750000000	4833496.50000000000
547621.87500000000	4833489.50000000000
546007.87500000000	4833483.50000000000
581467.00000000000	4832939.50000000000
580666.00000000000	4832930.50000000000
579865.00000000000	4832921.50000000000
579049.00000000000	4832911.50000000000
578233.00000000000	4832901.50000000000
577437.00000000000	4832883.50000000000
576642.00000000000	4832866.50000000000
575841.00000000000	4832865.50000000000
575041.00000000000	4832864.50000000000
574234.00000000000	4832859.50000000000
571828.00000000000	4832858.50000000000
572628.00000000000	4832856.50000000000
573428.00000000000	4832854.50000000000
571026.00000000000	4832842.50000000000
570224.00000000000	4832826.50000000000
569418.00000000000	4832825.50000000000
568612.93750000000	4832824.50000000000
567810.93750000000	4832813.50000000000
567008.93750000000	4832802.50000000000
566201.93750000000	4832793.50000000000
565394.93750000000	4832784.50000000000
564580.93750000000	4832765.50000000000
563766.93750000000	4832747.50000000000
562964.93750000000	4832727.50000000000
557345.93750000000	4832722.50000000000
558154.93750000000	4832719.50000000000
558964.93750000000	4832717.50000000000
556542.93750000000	4832716.50000000000
552479.87500000000	4832712.50000000000
555740.93750000000	4832711.50000000000
553282.93750000000	4832708.50000000000
554912.93750000000	4832708.50000000000
562163.93750000000	4832707.50000000000
551672.87500000000	4832706.50000000000
554085.93750000000	4832705.50000000000
559769.93750000000	4832705.50000000000
550866.87500000000	4832701.50000000000
561368.93750000000	4832700.50000000000
550058.87500000000	4832697.50000000000
549251.87500000000	4832693.50000000000
560574.93750000000	4832693.50000000000
548442.87500000000	4832687.50000000000
547633.87500000000	4832682.50000000000
546825.87500000000	4832681.50000000000
546018.87500000000	4832680.50000000000
545205.87500000000	4832661.50000000000
544392.87500000000	4832643.50000000000
581476.00000000000	4832138.50000000000
579873.00000000000	4832116.50000000000
578245.00000000000	4832101.50000000000
576648.00000000000	4832074.50000000000
575038.00000000000	4832061.50000000000
573441.00000000000	4832052.50000000000
571835.93750000000	4832043.50000000000
570233.93750000000	4832033.50000000000
568621.93750000000	4832028.50000000000
567014.93750000000	4832006.50000000000
565406.93750000000	4831986.50000000000
563776.93750000000	4831957.50000000000
557360.93750000000	4831920.50000000000
558973.93750000000	4831916.50000000000
555755.93750000000	4831910.50000000000
552481.87500000000	4831909.50000000000
562171.93750000000	4831909.50000000000
554087.87500000000	4831898.50000000000
550861.87500000000	4831895.50000000000
549252.87500000000	4831890.50000000000
560583.93750000000	4831890.50000000000
547638.87500000000	4831877.50000000000
546023.87500000000	4831876.50000000000
544401.87500000000	4831836.50000000000
581486.00000000000	4831338.50000000000
580683.00000000000	4831325.50000000000
579881.00000000000	4831312.50000000000
579069.00000000000	4831306.50000000000
578258.00000000000	4831301.50000000000
577455.93750000000	4831292.50000000000
576653.93750000000	4831283.50000000000
575844.93750000000	4831271.50000000000
575035.93750000000	4831259.50000000000
574244.93750000000	4831255.50000000000
573453.93750000000	4831251.50000000000
570243.93750000000	4831240.50000000000
572648.93750000000	4831239.50000000000
569436.93750000000	4831236.50000000000
571043.93750000000	4831234.50000000000
568630.93750000000	4831232.50000000000
571843.93750000000	4831228.50000000000
567825.93750000000	4831221.50000000000
567020.93750000000	4831210.50000000000
566219.93750000000	4831199.50000000000
565418.93750000000	4831188.50000000000
564602.93750000000	4831178.50000000000
563786.93750000000	4831168.50000000000
562983.93750000000	4831140.50000000000
557375.93750000000	4831118.50000000000
558179.93750000000	4831116.50000000000
558983.93750000000	4831115.50000000000
556572.87500000000	4831113.50000000000
562180.93750000000	4831112.50000000000
555770.87500000000	4831109.50000000000
552483.87500000000	4831106.50000000000
559787.93750000000	4831101.50000000000
554930.87500000000	4831100.50000000000
561386.93750000000	4831099.50000000000
553286.87500000000	4831098.50000000000
551670.87500000000	4831097.50000000000
554090.87500000000	4831091.50000000000
550857.87500000000	4831089.50000000000
550055.87500000000	4831088.50000000000
549253.87500000000	4831087.50000000000
560592.93750000000	4831087.50000000000
548448.87500000000	4831080.50000000000
547644.87500000000	4831073.50000000000
546028.87500000000	4831072.50000000000
546836.87500000000	4831072.50000000000
545219.87500000000	4831050.50000000000
544410.87500000000	4831029.50000000000
581499.00000000000	4830538.50000000000
579882.93750000000	4830520.50000000000
578263.93750000000	4830494.50000000000
576656.93750000000	4830485.50000000000
575042.93750000000	4830457.50000000000
573458.93750000000	4830452.50000000000
571849.93750000000	4830437.50000000000
570253.93750000000	4830435.50000000000
568641.93750000000	4830425.50000000000
567027.93750000000	4830403.50000000000
565418.93750000000	4830379.50000000000
563795.93750000000	4830365.50000000000
562196.93750000000	4830319.50000000000
557389.87500000000	4830316.50000000000
558993.93750000000	4830314.50000000000
555783.87500000000	4830310.50000000000
560601.93750000000	4830307.50000000000
552489.87500000000	4830301.50000000000
554100.87500000000	4830297.50000000000
550872.87500000000	4830287.50000000000
549268.87500000000	4830279.50000000000
546043.87500000000	4830263.50000000000
547657.87500000000	4830262.50000000000
544418.81250000000	4830223.50000000000
581511.93750000000	4829738.50000000000
580698.93750000000	4829733.50000000000
579885.93750000000	4829728.50000000000
579077.93750000000	4829708.50000000000
576659.93750000000	4829688.50000000000
577464.93750000000	4829688.50000000000
578270.93750000000	4829688.50000000000
575854.93750000000	4829672.50000000000
575050.93750000000	4829656.50000000000
574257.93750000000	4829654.50000000000
573464.93750000000	4829653.50000000000
572659.93750000000	4829649.50000000000
571855.93750000000	4829646.50000000000
571059.93750000000	4829638.50000000000
570263.93750000000	4829630.50000000000
569457.93750000000	4829624.50000000000
568652.93750000000	4829618.50000000000
567843.93750000000	4829607.50000000000
567035.93750000000	4829597.50000000000
566226.93750000000	4829584.50000000000
565418.93750000000	4829571.50000000000
564611.93750000000	4829567.50000000000
563804.93750000000	4829563.50000000000
563008.93750000000	4829545.50000000000
560611.87500000000	4829528.50000000000
561411.93750000000	4829527.50000000000
562212.93750000000	4829527.50000000000
559807.87500000000	4829521.50000000000
557403.87500000000	4829515.50000000000
558203.87500000000	4829514.50000000000
559004.87500000000	4829514.50000000000
556599.87500000000	4829513.50000000000
555796.87500000000	4829512.50000000000
554953.87500000000	4829507.50000000000
554111.87500000000	4829503.50000000000
553303.87500000000	4829499.50000000000
552496.87500000000	4829496.50000000000
551691.87500000000	4829491.50000000000
550887.87500000000	4829486.50000000000
550085.87500000000	4829478.50000000000
549283.87500000000	4829471.50000000000
548476.87500000000	4829461.50000000000
546059.81250000000	4829455.50000000000
546864.81250000000	4829453.50000000000
547670.87500000000	4829451.50000000000
545242.81250000000	4829436.50000000000
544426.81250000000	4829417.50000000000
581522.93750000000	4828937.50000000000
579898.93750000000	4828926.50000000000
578283.93750000000	4828894.50000000000
576673.93750000000	4828887.50000000000
575063.93750000000	4828860.50000000000
573478.93750000000	4828856.50000000000
571872.93750000000	4828837.50000000000
570274.93750000000	4828820.50000000000
568659.93750000000	4828817.50000000000
567048.93750000000	4828792.50000000000
565432.87500000000	4828770.50000000000
563809.87500000000	4828762.50000000000
562218.87500000000	4828728.50000000000
560620.87500000000	4828723.50000000000
559008.87500000000	4828715.50000000000
557405.87500000000	4828710.50000000000
555793.87500000000	4828708.50000000000
554113.87500000000	4828700.50000000000
552504.87500000000	4828692.50000000000
550893.87500000000	4828679.50000000000
549288.87500000000	4828664.50000000000
546057.81250000000	4828647.50000000000
547675.81250000000	4828646.50000000000
581534.93750000000	4828137.50000000000
580723.93750000000	4828131.50000000000
579912.93750000000	4828125.50000000000
579104.93750000000	4828113.50000000000
578296.93750000000	4828101.50000000000
577491.93750000000	4828094.50000000000
576687.93750000000	4828087.50000000000
575882.93750000000	4828075.50000000000
575077.93750000000	4828064.50000000000
574284.93750000000	4828062.50000000000
573492.93750000000	4828060.50000000000
572690.93750000000	4828044.50000000000
571889.93750000000	4828029.50000000000
571087.93750000000	4828020.50000000000
568667.87500000000	4828016.50000000000
569476.87500000000	4828013.50000000000
570285.87500000000	4828011.50000000000
567864.87500000000	4828002.50000000000
567061.87500000000	4827988.50000000000
566254.87500000000	4827979.50000000000
565447.87500000000	4827970.50000000000
564631.87500000000	4827965.50000000000
563815.87500000000	4827961.50000000000
563019.87500000000	4827945.50000000000
562224.87500000000	4827929.50000000000
561427.87500000000	4827924.50000000000
560630.87500000000	4827919.50000000000
559821.87500000000	4827917.50000000000
559013.87500000000	4827916.50000000000
558210.87500000000	4827911.50000000000
557407.87500000000	4827906.50000000000
555790.87500000000	4827905.50000000000
556598.87500000000	4827905.50000000000
554953.87500000000	4827901.50000000000
554116.87500000000	4827897.50000000000
553314.87500000000	4827892.50000000000
552513.87500000000	4827888.50000000000
551706.87500000000	4827880.50000000000
550899.87500000000	4827872.50000000000
550096.81250000000	4827864.50000000000
549293.81250000000	4827857.50000000000
548486.81250000000	4827849.50000000000
547680.81250000000	4827842.50000000000
546868.81250000000	4827840.50000000000
546056.81250000000	4827839.50000000000
545247.81250000000	4827823.50000000000
544439.81250000000	4827808.50000000000
581547.93750000000	4827342.50000000000
579928.93750000000	4827326.50000000000
578311.93750000000	4827303.50000000000
576700.93750000000	4827288.50000000000
575097.87500000000	4827262.50000000000
573503.87500000000	4827255.50000000000
571901.87500000000	4827229.50000000000
570293.87500000000	4827212.50000000000
568683.87500000000	4827208.50000000000
567078.87500000000	4827184.50000000000
565470.87500000000	4827164.50000000000
563834.87500000000	4827155.50000000000
562230.87500000000	4827134.50000000000
560626.87500000000	4827118.50000000000
559019.87500000000	4827109.50000000000
557407.87500000000	4827100.50000000000
555792.87500000000	4827098.50000000000
554127.87500000000	4827090.50000000000
552523.81250000000	4827076.50000000000
550906.81250000000	4827065.50000000000
549302.81250000000	4827052.50000000000
547691.81250000000	4827037.50000000000
546074.81250000000	4827034.50000000000
581561.93750000000	4826547.50000000000
580752.87500000000	4826537.50000000000
579944.87500000000	4826527.50000000000
579135.87500000000	4826516.50000000000
578327.87500000000	4826506.50000000000
577520.87500000000	4826498.50000000000
576714.87500000000	4826490.50000000000
575915.87500000000	4826475.50000000000
575117.87500000000	4826460.50000000000
574316.87500000000	4826455.50000000000
573515.87500000000	4826450.50000000000
572714.87500000000	4826439.50000000000
571913.87500000000	4826429.50000000000
571107.87500000000	4826421.50000000000
570301.87500000000	4826413.50000000000
569500.87500000000	4826406.50000000000
568699.87500000000	4826400.50000000000
567897.87500000000	4826390.50000000000
567096.87500000000	4826381.50000000000
566295.87500000000	4826370.50000000000
565494.87500000000	4826359.50000000000
564673.87500000000	4826354.50000000000
563853.87500000000	4826350.50000000000
563044.87500000000	4826344.50000000000
562236.87500000000	4826339.50000000000
561429.87500000000	4826328.50000000000
560623.87500000000	4826317.50000000000
559824.87500000000	4826310.50000000000
559026.87500000000	4826303.50000000000
558217.87500000000	4826299.50000000000
557408.87500000000	4826295.50000000000
556601.87500000000	4826293.50000000000
555794.87500000000	4826291.50000000000
554966.81250000000	4826287.50000000000
554138.81250000000	4826284.50000000000
553335.81250000000	4826274.50000000000
552533.81250000000	4826265.50000000000
551723.81250000000	4826261.50000000000
550913.81250000000	4826258.50000000000
550112.81250000000	4826253.50000000000
549311.81250000000	4826248.50000000000
548506.81250000000	4826240.50000000000
547702.81250000000	4826232.50000000000
546897.81250000000	4826230.50000000000
546092.81250000000	4826229.50000000000
545271.81250000000	4826211.50000000000
544451.81250000000	4826193.50000000000
581563.87500000000	4825740.50000000000
579949.87500000000	4825722.50000000000
578340.87500000000	4825707.50000000000
576725.87500000000	4825683.50000000000
575118.87500000000	4825665.50000000000
573522.87500000000	4825647.50000000000
571918.87500000000	4825633.50000000000
570310.87500000000	4825621.50000000000
568704.87500000000	4825603.50000000000
567101.87500000000	4825596.50000000000
565496.87500000000	4825581.50000000000
563853.87500000000	4825546.50000000000
562244.87500000000	4825530.50000000000
560635.87500000000	4825522.50000000000
559024.87500000000	4825504.50000000000
557409.81250000000	4825499.50000000000
555792.81250000000	4825488.50000000000
554144.81250000000	4825480.50000000000
552537.81250000000	4825455.50000000000
549324.81250000000	4825451.50000000000
546093.81250000000	4825424.50000000000
547705.81250000000	4825420.50000000000
581566.87500000000	4824933.50000000000
580760.87500000000	4824925.50000000000
579954.87500000000	4824918.50000000000
579153.87500000000	4824913.50000000000
578353.87500000000	4824909.50000000000
577544.87500000000	4824892.50000000000
576736.87500000000	4824876.50000000000
575928.87500000000	4824873.50000000000
575120.87500000000	4824870.50000000000
574325.87500000000	4824857.50000000000
573530.87500000000	4824844.50000000000
572726.87500000000	4824840.50000000000
571923.87500000000	4824837.50000000000
571121.87500000000	4824833.50000000000
570319.87500000000	4824829.50000000000
569514.87500000000	4824818.50000000000
567106.87500000000	4824812.50000000000
567907.87500000000	4824809.50000000000
566302.87500000000	4824808.50000000000
568709.87500000000	4824807.50000000000
565499.87500000000	4824804.50000000000
564676.87500000000	4824773.50000000000
563854.87500000000	4824743.50000000000
563053.87500000000	4824732.50000000000
560648.87500000000	4824727.50000000000
561450.87500000000	4824724.50000000000
562252.87500000000	4824721.50000000000
559835.81250000000	4824716.50000000000
559023.81250000000	4824705.50000000000
557410.81250000000	4824704.50000000000
558216.81250000000	4824704.50000000000
556600.81250000000	4824694.50000000000
555791.81250000000	4824685.50000000000
554971.81250000000	4824681.50000000000
554151.81250000000	4824677.50000000000
553346.81250000000	4824661.50000000000
549337.81250000000	4824655.50000000000
552541.81250000000	4824645.50000000000
548522.81250000000	4824632.50000000000
546095.81250000000	4824619.50000000000
546901.81250000000	4824614.50000000000
547708.81250000000	4824609.50000000000
581576.87500000000	4824131.50000000000
579957.87500000000	4824114.50000000000
578352.87500000000	4824104.50000000000
576744.87500000000	4824073.50000000000
575129.87500000000	4824064.50000000000
573538.87500000000	4824041.50000000000
571927.87500000000	4824036.50000000000
570323.87500000000	4824023.50000000000
567100.87500000000	4824009.50000000000
568715.87500000000	4824005.50000000000
565496.81250000000	4823998.50000000000
563861.81250000000	4823935.50000000000
562256.81250000000	4823919.50000000000
560644.81250000000	4823918.50000000000
557409.81250000000	4823902.50000000000
559026.81250000000	4823899.50000000000
581587.87500000000	4823329.50000000000
580774.87500000000	4823319.50000000000
579961.87500000000	4823310.50000000000
579156.87500000000	4823305.50000000000
578351.87500000000	4823300.50000000000
577552.87500000000	4823285.50000000000
576753.87500000000	4823271.50000000000
575945.87500000000	4823265.50000000000
575138.87500000000	4823259.50000000000
574342.87500000000	4823249.50000000000
573546.81250000000	4823239.50000000000
572738.81250000000	4823237.50000000000
571931.81250000000	4823235.50000000000
571129.81250000000	4823226.50000000000
570328.81250000000	4823217.50000000000
569525.81250000000	4823210.50000000000
567095.81250000000	4823206.50000000000
567908.81250000000	4823204.50000000000
568722.81250000000	4823203.50000000000
566294.81250000000	4823199.50000000000
565494.81250000000	4823193.50000000000
564681.81250000000	4823160.50000000000
563869.81250000000	4823128.50000000000
563065.81250000000	4823122.50000000000
562261.81250000000	4823117.50000000000
561451.81250000000	4823113.50000000000
560641.81250000000	4823110.50000000000
559835.81250000000	4823102.50000000000
557408.81250000000	4823100.50000000000
558218.81250000000	4823097.50000000000
559029.81250000000	4823094.50000000000
581599.87500000000	4822531.50000000000
579966.81250000000	4822508.50000000000
578357.81250000000	4822497.50000000000
576757.81250000000	4822472.50000000000
575151.81250000000	4822458.50000000000
573555.81250000000	4822437.50000000000
571940.81250000000	4822435.50000000000
570333.81250000000	4822405.50000000000
567103.81250000000	4822399.50000000000
568721.81250000000	4822397.50000000000
565494.81250000000	4822384.50000000000
563871.81250000000	4822326.50000000000
562260.81250000000	4822314.50000000000
560641.81250000000	4822307.50000000000
557409.81250000000	4822292.50000000000
559029.81250000000	4822291.50000000000
581612.81250000000	4821734.50000000000
580792.81250000000	4821720.50000000000
579972.81250000000	4821707.50000000000
579167.81250000000	4821701.50000000000
578363.81250000000	4821695.50000000000
577562.81250000000	4821684.50000000000
576761.81250000000	4821674.50000000000
575962.81250000000	4821666.50000000000
575164.81250000000	4821658.50000000000
574364.81250000000	4821646.50000000000
571949.81250000000	4821636.50000000000
572756.81250000000	4821635.50000000000
573564.81250000000	4821635.50000000000
571143.81250000000	4821614.50000000000
567111.81250000000	4821593.50000000000
570338.81250000000	4821593.50000000000
567916.81250000000	4821592.50000000000
569529.81250000000	4821592.50000000000
568721.81250000000	4821591.50000000000
566303.81250000000	4821584.50000000000
565495.81250000000	4821575.50000000000
564684.81250000000	4821549.50000000000
563874.81250000000	4821524.50000000000
563067.81250000000	4821518.50000000000
562260.81250000000	4821512.50000000000
561451.81250000000	4821508.50000000000
560642.81250000000	4821505.50000000000
559835.81250000000	4821497.50000000000
559029.81250000000	4821489.50000000000
558219.81250000000	4821487.50000000000
557410.81250000000	4821485.50000000000
581628.81250000000	4820934.50000000000
579995.81250000000	4820910.50000000000
578376.81250000000	4820896.50000000000
576775.81250000000	4820870.50000000000
575176.81250000000	4820855.50000000000
573573.81250000000	4820831.50000000000
571955.81250000000	4820830.50000000000
570349.81250000000	4820789.50000000000
568733.81250000000	4820786.50000000000
567126.81250000000	4820784.50000000000
565506.81250000000	4820769.50000000000
563880.81250000000	4820718.50000000000
562265.81250000000	4820706.50000000000
560652.81250000000	4820695.50000000000
559031.81250000000	4820684.50000000000
557419.81250000000	4820678.50000000000
581644.81250000000	4820135.50000000000
580831.81250000000	4820124.50000000000
580018.81250000000	4820114.50000000000
579204.81250000000	4820105.50000000000
578390.81250000000	4820097.50000000000
577590.81250000000	4820082.50000000000
576790.81250000000	4820067.50000000000
575989.81250000000	4820059.50000000000
575188.81250000000	4820052.50000000000
574385.81250000000	4820040.50000000000
573583.81250000000	4820028.50000000000
572772.81250000000	4820026.50000000000
571962.81250000000	4820024.50000000000
571161.81250000000	4820004.50000000000
570360.81250000000	4819985.50000000000
569552.81250000000	4819983.50000000000
568745.81250000000	4819982.50000000000
567943.81250000000	4819979.50000000000
567142.81250000000	4819976.50000000000
566330.81250000000	4819970.50000000000
565518.81250000000	4819964.50000000000
564702.81250000000	4819938.50000000000
563887.81250000000	4819912.50000000000
563078.81250000000	4819906.50000000000
562270.81250000000	4819901.50000000000
561466.81250000000	4819893.50000000000
560662.81250000000	4819885.50000000000
559848.81250000000	4819882.50000000000
559034.75000000000	4819879.50000000000
558231.75000000000	4819875.50000000000
557428.75000000000	4819871.50000000000
556614.75000000000	4819859.50000000000
555801.75000000000	4819847.50000000000
581652.81250000000	4819334.50000000000
580028.81250000000	4819304.50000000000
578404.81250000000	4819290.50000000000
576798.81250000000	4819265.50000000000
575195.81250000000	4819242.50000000000
573587.81250000000	4819219.50000000000
571973.81250000000	4819218.50000000000
570368.81250000000	4819184.50000000000
568756.75000000000	4819178.50000000000
567145.75000000000	4819172.50000000000
565527.75000000000	4819153.50000000000
563890.75000000000	4819110.50000000000
562271.75000000000	4819099.50000000000
560666.75000000000	4819082.50000000000
559042.75000000000	4819075.50000000000
557432.75000000000	4819066.50000000000
555813.75000000000	4819045.50000000000
581660.81250000000	4818533.50000000000
580849.75000000000	4818514.50000000000
580039.75000000000	4818495.50000000000
579229.75000000000	4818489.50000000000
578419.75000000000	4818484.50000000000
577613.75000000000	4818474.50000000000
576807.75000000000	4818464.50000000000
576005.75000000000	4818448.50000000000
575203.75000000000	4818432.50000000000
574397.75000000000	4818421.50000000000
571985.75000000000	4818413.50000000000
572788.75000000000	4818412.50000000000
573592.75000000000	4818411.50000000000
571180.75000000000	4818398.50000000000
570376.75000000000	4818383.50000000000
569572.75000000000	4818378.50000000000
568768.75000000000	4818374.50000000000
567958.75000000000	4818371.50000000000
567149.75000000000	4818369.50000000000
566343.75000000000	4818356.50000000000
565537.75000000000	4818343.50000000000
564715.75000000000	4818326.50000000000
563893.75000000000	4818309.50000000000
563083.75000000000	4818303.50000000000
562273.75000000000	4818298.50000000000
561471.75000000000	4818289.50000000000
560670.75000000000	4818280.50000000000
559860.75000000000	4818276.50000000000
559050.75000000000	4818272.50000000000
558243.75000000000	4818267.50000000000
557437.75000000000	4818262.50000000000
556631.75000000000	4818253.50000000000
555825.75000000000	4818244.50000000000
581674.75000000000	4817720.50000000000
580064.75000000000	4817689.50000000000
578436.75000000000	4817674.50000000000
576822.75000000000	4817660.50000000000
575215.75000000000	4817639.50000000000
573597.75000000000	4817611.50000000000
571988.75000000000	4817608.50000000000
570382.75000000000	4817583.50000000000
568764.75000000000	4817572.50000000000
567151.75000000000	4817561.50000000000
565541.75000000000	4817533.50000000000
563902.75000000000	4817508.50000000000
562285.75000000000	4817496.50000000000
560678.75000000000	4817479.50000000000
559056.75000000000	4817467.50000000000
557445.75000000000	4817453.50000000000
555831.75000000000	4817436.50000000000
581689.75000000000	4816907.50000000000
580089.75000000000	4816884.50000000000
579271.75000000000	4816874.50000000000
578453.75000000000	4816864.50000000000
577645.75000000000	4816860.50000000000
576838.75000000000	4816856.50000000000
575228.75000000000	4816846.50000000000
570389.75000000000	4816784.50000000000
565545.75000000000	4816724.50000000000
563911.75000000000	4816707.50000000000
562297.75000000000	4816695.50000000000
560687.75000000000	4816678.50000000000
559875.75000000000	4816670.50000000000
559063.75000000000	4816662.50000000000
557453.75000000000	4816645.50000000000
556645.75000000000	4816637.50000000000
555838.75000000000	4816629.50000000000



------------------------------

Message: 68
Date: Wed, 28 Jan 2009 20:41:08 +0000
From: glenn <g1enn.roberts at btinternet.com>
Subject: [R] Cor(df,method = "kendall")
To: "r-help at r-project.org" <r-help at r-project.org>
Message-ID: <C5A67364.1140%g1enn.roberts at btinternet.com>
Content-Type: text/plain

Hi All,

Does anyone know of any issues at all with using;

Cor(df,method = ³kendall²)

On a dataframe (df) 13 columns wide say?

Seems to hang my system for a while in calculating the correlation matrix ­
appreciate it is doing some ranking calculations so I am expecting too much
that it should return immediately ? In particular trying to use function in
Excel (reval) and I am getting OLE error boxes as RGUI hangs.

Many Thanks.

Glenn

	[[alternative HTML version deleted]]



------------------------------

Message: 69
Date: Wed, 28 Jan 2009 15:46:43 -0500
From: stephen sefick <ssefick at gmail.com>
Subject: Re: [R] R compilation
To: "Attiglah, Mama" <Mama_Attiglah at ssga.com>
Cc: r-sig-finance at stat.math.ethz.ch, r-help at r-project.org,
	r-sig-hpc at r-project.org, r-sig-db at stat.math.ethz.ch
Message-ID:
	<c502a9e10901281246u2d14b1d7od4161f733f9bfc0f at mail.gmail.com>
Content-Type: text/plain; charset=UTF-8

yes, first don't crosspost.  It all depends on what OS .. blah, blah,
blah.  You must read the posting guide because it will up your chances
of a reply.

On Wed, Jan 28, 2009 at 1:37 PM, Attiglah, Mama <Mama_Attiglah at ssga.com> wrote:
>
> Hi Mates,
> I have a very long R code that needs to go to production but my portfolio managers do not use R language and the software is not supported by my bank.
> Is there any way I can compile the code to an executable file and make it usable to my portfolio managers who have no knowledge at all of R?
>
> Thanks
>
> Mama
>  -----
> Mama Attiglah, PhD
> Quantitative Strategist
> Liability Driven Investment
> State Street Global Advisors
> 25 Bank Street, London E14 5NU
> +44(0)20 7698 6290 (Direct Line)
> +44 (0)207 004 2968 (Direct Fax)
> Authorised and regulated by the Financial Services Authority.
> State Street Global Advisors Limited, a company registered in England with company number 2509928
> and VAT number 5576591 81 and whose registered office ...{{dropped:21}}



------------------------------

Message: 70
Date: Wed, 28 Jan 2009 14:51:25 -0600
From: roger koenker <rkoenker at uiuc.edu>
Subject: Re: [R] Neighborhood distance calculator
To: Kumudan <cybermails at gmail.com>
Cc: r-help <r-help at r-project.org>
Message-ID: <FEEDB763-0E6E-4E7F-8A6D-C10B94884FC3 at uiuc.edu>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

If you are willing to dig into the adjacency information returned from
tri.mesh in the tripack package, this could be done quite efficiently.

url:    www.econ.uiuc.edu/~roger            Roger Koenker
email    rkoenker at uiuc.edu            Department of Economics
vox:     217-333-4558                University of Illinois
fax:       217-244-6678                Champaign, IL 61820

On Jan 28, 2009, at 2:33 PM, Kumudan wrote:

> Hi all,
>
> I am new to R, hence this question. I have a set of points with X and
> Y coordinates. I would like to build an R code to calculate the
> distances of points within a specified neighborhood (circular range)
> for each point. I would like the code to be a function, so that I can
> call the function, specifying parameters (data file, distance), from
> another piece of code. Also, I would like the output to be as:
>
> output = list(array)
> .........code...........
> ........new code.....
> return(output)
>
> Something like this--
> [[1496]]
> [1] 1490 1491 1492 1493 1494 1495
>
> The most important thing, however, is that I want to run the code for
> 100,000+ points. The current code I have calculates the neighborhood
> distances for all the points with ever point, and then selects only
> those points within the specified distance parameter. This code
> crashes when I have over 40,000 points. Therefore, I need to figure
> out a way to preclude the step where it calculates all of the paired
> distances, and rather only those points within the specified distance
> parameter. Please, see below for the existing code, and a sample data.
> Thanks a lot for your time and effort.
>
> Best,
> Kumudan
>
> Kumudan Grubh
> EEB Graduate student
> Iowa State University
>
> -------------------------------------------------------------------------------------------------------------------------------------------------------
> #--Code--
> #transform coordinates in kilometers, and redefine origin
> newx=(XCOORD-min(XCOORD))/1000
> newy=(YCOORD-min(YCOORD))/1000
> plot(newx,newy,pch=20,xlab="X coordinate (km)",ylab="Y coordinate  
> (km)")
>
> #set of new locations to be used from here on
> tr.locs=cbind(newx,newy)
>
> #the functions necessary for estimation are written in an external
> program. All you need to do is to run this program one. To do this,
> you could "source" this code
> source("D:/...../Functions_distance.R")
>
> #define distance-based neighborhood
> nb.tr=dist.neighbors(tr.locs,2)
> ----------------------------------------------------------------------------------------------------------------------------------------------------------
> #---Function_distance.R   <- Function to calculate distance of pairs
> of neighbors
> #start by defining neighbors
> library(spatstat)#need this to compute distances between all points  
> in a data
>
> dist.neighbors=function(data,distance)
> #distance is set by user
> {
> #data has the x and y on the first two columns. Could have more than
> two columns, or exactly two columns, it doesn't matter.
> #produces a "list" object with a vector of the neighbors for each  
> location
> #distance defines the range within which we define neighbors
> nd=length(data[,1])
> nbmat=list(array)
> dist=pairdist(data[,1:2])
>  for(i in 1:nd){
>  nbmat[[i]]=0
> 	for(j in 1:nd) if((dist[i,j]<distance)&(i!=j))  
> nbmat[[i]]=c(nbmat[[i]],j)
> 	nbmat[[i]]=nbmat[[i]][nbmat[[i]]!=0]}
> return(nbmat)		
> }
> ------------------------------------------------------------------------------------------------------------------------------------
>
> Data
> -----------------------------------------------------------------------------------
> XCOORD	YCOORD
> 544312.87500000000	4851169.00000000000
> 542705.87500000000	4851165.00000000000
> 541068.87500000000	4851155.00000000000
> 537861.81250000000	4851123.00000000000
> 536246.81250000000	4851118.00000000000
> 539476.87500000000	4851116.00000000000
> 534612.81250000000	4851113.00000000000
> 533004.75000000000	4851095.00000000000
> 542714.87500000000	4850363.00000000000
> 543516.87500000000	4850360.00000000000
> 544319.93750000000	4850358.00000000000
> 541883.87500000000	4850353.00000000000
> 541053.87500000000	4850342.50000000000
> 540268.87500000000	4850326.50000000000
> 537866.81250000000	4850313.50000000000
> 538674.87500000000	4850311.50000000000
> 539483.87500000000	4850310.50000000000
> 537060.81250000000	4850310.00000000000
> 536255.81250000000	4850307.00000000000
> 535434.81250000000	4850306.00000000000
> 534614.81250000000	4850305.00000000000
> 533809.81250000000	4850297.00000000000
> 533004.81250000000	4850289.00000000000
> 542716.87500000000	4849553.50000000000
> 541074.87500000000	4849537.50000000000
> 539486.87500000000	4849508.50000000000
> 537867.87500000000	4849507.50000000000
> 536260.81250000000	4849503.50000000000
> 534622.81250000000	4849498.50000000000
> 533009.81250000000	4849483.00000000000
> 542718.93750000000	4848744.50000000000
> 543524.93750000000	4848743.50000000000
> 544331.93750000000	4848743.50000000000
> 541906.87500000000	4848738.50000000000
> 541095.87500000000	4848733.50000000000
> 540292.87500000000	4848720.50000000000
> 539489.87500000000	4848707.50000000000
> 538679.87500000000	4848704.50000000000
> 537869.87500000000	4848702.50000000000
> 536265.81250000000	4848701.50000000000
> 537067.87500000000	4848701.50000000000
> 535447.81250000000	4848697.50000000000
> 534630.81250000000	4848693.50000000000
> 533822.81250000000	4848684.50000000000
> 533014.81250000000	4848676.50000000000
> 532211.81250000000	4848663.50000000000
> 531409.81250000000	4848650.50000000000
> 542724.93750000000	4847938.50000000000
> 541102.87500000000	4847926.50000000000
> 539492.87500000000	4847906.50000000000
> 537874.87500000000	4847896.50000000000
> 536267.87500000000	4847894.50000000000
> 534634.81250000000	4847882.50000000000
> 533016.81250000000	4847869.50000000000
> 531414.81250000000	4847840.50000000000
> 544345.93750000000	4847135.50000000000
> 543538.93750000000	4847133.50000000000
> 542731.93750000000	4847132.50000000000
> 541920.93750000000	4847125.50000000000
> 541109.93750000000	4847119.50000000000
> 540302.87500000000	4847112.50000000000
> 539496.87500000000	4847105.50000000000
> 538688.87500000000	4847097.50000000000
> 537880.87500000000	4847090.50000000000
> 537075.87500000000	4847088.50000000000
> 536270.87500000000	4847087.50000000000
> 535454.87500000000	4847079.50000000000
> 534639.87500000000	4847071.50000000000
> 533829.81250000000	4847067.50000000000
> 533019.81250000000	4847063.50000000000
> 532219.81250000000	4847047.50000000000
> 531420.81250000000	4847031.50000000000
> 544350.93750000000	4846325.50000000000
> 542735.93750000000	4846319.50000000000
> 541112.93750000000	4846307.50000000000
> 539497.87500000000	4846294.50000000000
> 537882.87500000000	4846282.50000000000
> 536267.87500000000	4846277.50000000000
> 534638.87500000000	4846263.50000000000
> 533022.81250000000	4846253.50000000000
> 531424.81250000000	4846221.50000000000
> 544356.93750000000	4845516.50000000000
> 543547.93750000000	4845511.50000000000
> 542739.93750000000	4845507.50000000000
> 541927.93750000000	4845501.50000000000
> 541115.93750000000	4845495.50000000000
> 540307.93750000000	4845489.50000000000
> 539499.93750000000	4845483.50000000000
> 538692.93750000000	4845478.50000000000
> 537885.87500000000	4845474.50000000000
> 537075.87500000000	4845471.50000000000
> 536265.87500000000	4845468.50000000000
> 535451.87500000000	4845462.50000000000
> 534638.87500000000	4845456.50000000000
> 533831.87500000000	4845449.50000000000
> 533025.87500000000	4845443.50000000000
> 532226.81250000000	4845427.50000000000
> 531428.81250000000	4845412.50000000000
> 530621.81250000000	4845407.50000000000
> 529814.81250000000	4845402.50000000000
> 544356.93750000000	4844711.50000000000
> 542738.93750000000	4844704.50000000000
> 541123.93750000000	4844689.50000000000
> 539506.93750000000	4844675.50000000000
> 537893.93750000000	4844664.50000000000
> 536284.87500000000	4844654.50000000000
> 534641.87500000000	4844646.50000000000
> 533027.87500000000	4844634.50000000000
> 531423.87500000000	4844606.50000000000
> 529812.81250000000	4844600.50000000000
> 544357.93750000000	4843907.50000000000
> 543547.93750000000	4843904.50000000000
> 542737.93750000000	4843901.50000000000
> 541934.93750000000	4843892.50000000000
> 541132.93750000000	4843883.50000000000
> 540323.93750000000	4843875.50000000000
> 539514.93750000000	4843868.50000000000
> 538708.93750000000	4843861.50000000000
> 537902.93750000000	4843854.50000000000
> 537102.87500000000	4843847.50000000000
> 536303.87500000000	4843841.50000000000
> 535473.87500000000	4843838.50000000000
> 534644.87500000000	4843836.50000000000
> 533837.87500000000	4843830.50000000000
> 533030.87500000000	4843825.50000000000
> 532224.87500000000	4843813.50000000000
> 531419.87500000000	4843801.50000000000
> 530615.81250000000	4843800.50000000000
> 529811.81250000000	4843799.50000000000
> 544356.93750000000	4843106.50000000000
> 542737.93750000000	4843094.50000000000
> 541133.93750000000	4843075.50000000000
> 539515.93750000000	4843065.50000000000
> 537906.87500000000	4843047.50000000000
> 536303.87500000000	4843031.50000000000
> 534654.87500000000	4843025.50000000000
> 533033.87500000000	4843015.50000000000
> 531419.81250000000	4842993.50000000000
> 529808.81250000000	4842989.50000000000
> 544356.93750000000	4842305.50000000000
> 543547.93750000000	4842296.50000000000
> 542738.93750000000	4842287.50000000000
> 541936.93750000000	4842277.50000000000
> 541134.93750000000	4842268.50000000000
> 540325.93750000000	4842265.50000000000
> 539516.93750000000	4842262.50000000000
> 538713.87500000000	4842251.50000000000
> 537911.87500000000	4842240.50000000000
> 537107.87500000000	4842231.50000000000
> 536304.87500000000	4842222.50000000000
> 535484.87500000000	4842218.50000000000
> 534664.87500000000	4842214.50000000000
> 533850.87500000000	4842210.50000000000
> 533037.87500000000	4842206.50000000000
> 532228.81250000000	4842195.50000000000
> 531419.81250000000	4842185.50000000000
> 530612.81250000000	4842182.50000000000
> 529806.81250000000	4842179.50000000000
> 544356.93750000000	4841500.50000000000
> 542738.93750000000	4841483.50000000000
> 541132.93750000000	4841463.50000000000
> 539520.93750000000	4841454.50000000000
> 537913.87500000000	4841433.50000000000
> 536304.87500000000	4841418.50000000000
> 534667.87500000000	4841408.50000000000
> 533040.81250000000	4841393.50000000000
> 531425.81250000000	4841373.50000000000
> 529811.81250000000	4841367.50000000000
> 544356.93750000000	4840695.50000000000
> 543547.93750000000	4840687.50000000000
> 542739.93750000000	4840680.50000000000
> 541934.93750000000	4840669.50000000000
> 541130.93750000000	4840658.50000000000
> 540327.93750000000	4840652.50000000000
> 539525.87500000000	4840647.50000000000
> 538720.87500000000	4840637.50000000000
> 537915.87500000000	4840627.50000000000
> 537109.87500000000	4840621.50000000000
> 536304.87500000000	4840615.50000000000
> 535487.87500000000	4840609.50000000000
> 534670.87500000000	4840603.50000000000
> 533856.81250000000	4840591.50000000000
> 533043.81250000000	4840580.50000000000
> 532237.81250000000	4840571.50000000000
> 531431.81250000000	4840562.50000000000
> 530624.81250000000	4840559.50000000000
> 529817.81250000000	4840556.50000000000
> 544357.93750000000	4839892.50000000000
> 542743.93750000000	4839876.50000000000
> 541131.93750000000	4839852.50000000000
> 539528.87500000000	4839840.50000000000
> 537916.87500000000	4839821.50000000000
> 536303.87500000000	4839804.50000000000
> 534672.81250000000	4839794.50000000000
> 533050.81250000000	4839778.50000000000
> 531440.81250000000	4839759.50000000000
> 529825.81250000000	4839749.50000000000
> 544358.93750000000	4839089.50000000000
> 543552.93750000000	4839080.50000000000
> 542747.93750000000	4839072.50000000000
> 541940.87500000000	4839059.50000000000
> 541133.87500000000	4839046.50000000000
> 540332.87500000000	4839040.50000000000
> 539531.87500000000	4839034.50000000000
> 538724.87500000000	4839024.50000000000
> 537918.87500000000	4839015.50000000000
> 537110.87500000000	4839004.50000000000
> 536303.87500000000	4838994.50000000000
> 535489.81250000000	4838990.50000000000
> 534675.81250000000	4838986.50000000000
> 533866.81250000000	4838981.50000000000
> 533057.81250000000	4838976.50000000000
> 532253.81250000000	4838966.50000000000
> 531450.81250000000	4838957.50000000000
> 530642.81250000000	4838949.50000000000
> 529834.81250000000	4838942.50000000000
> 544359.93750000000	4838278.50000000000
> 542747.87500000000	4838263.50000000000
> 541137.87500000000	4838242.50000000000
> 539534.87500000000	4838228.50000000000
> 537918.87500000000	4838210.50000000000
> 536303.87500000000	4838187.50000000000
> 534680.81250000000	4838174.50000000000
> 533064.81250000000	4838165.50000000000
> 531457.81250000000	4838148.50000000000
> 529837.75000000000	4838137.50000000000
> 544360.93750000000	4837467.50000000000
> 543553.87500000000	4837460.50000000000
> 542747.87500000000	4837454.50000000000
> 541944.87500000000	4837446.50000000000
> 541142.87500000000	4837438.50000000000
> 540339.87500000000	4837430.50000000000
> 539537.87500000000	4837422.50000000000
> 538728.87500000000	4837413.50000000000
> 537919.87500000000	4837405.50000000000
> 537111.87500000000	4837392.50000000000
> 536303.81250000000	4837380.50000000000
> 535494.81250000000	4837371.50000000000
> 534685.81250000000	4837362.50000000000
> 533878.81250000000	4837358.50000000000
> 533071.81250000000	4837354.50000000000
> 532268.81250000000	4837347.50000000000
> 531465.81250000000	4837340.50000000000
> 530653.75000000000	4837336.50000000000
> 529841.75000000000	4837333.50000000000
> 544362.87500000000	4836662.50000000000
> 542744.87500000000	4836643.50000000000
> 541137.87500000000	4836632.50000000000
> 539532.87500000000	4836618.50000000000
> 537914.87500000000	4836595.50000000000
> 536301.81250000000	4836574.50000000000
> 534692.81250000000	4836553.50000000000
> 533075.81250000000	4836547.50000000000
> 531468.75000000000	4836535.50000000000
> 544365.87500000000	4835857.50000000000
> 544365.87500000000	4835857.50000000000
> 543553.87500000000	4835845.50000000000
> 542742.87500000000	4835833.50000000000
> 541937.87500000000	4835830.50000000000
> 541133.87500000000	4835827.50000000000
> 540330.87500000000	4835821.50000000000
> 539528.87500000000	4835815.50000000000
> 538718.87500000000	4835800.50000000000
> 537909.81250000000	4835785.50000000000
> 537104.81250000000	4835777.50000000000
> 536300.81250000000	4835769.50000000000
> 535499.81250000000	4835756.50000000000
> 534699.81250000000	4835744.50000000000
> 533889.81250000000	4835742.50000000000
> 533080.81250000000	4835740.50000000000
> 532275.75000000000	4835735.50000000000
> 531471.75000000000	4835731.50000000000
> 544370.87500000000	4835052.50000000000
> 542750.87500000000	4835025.50000000000
> 541144.87500000000	4835014.50000000000
> 539538.87500000000	4835004.50000000000
> 537922.81250000000	4834987.50000000000
> 536315.81250000000	4834974.50000000000
> 544376.87500000000	4834248.50000000000
> 543567.87500000000	4834232.50000000000
> 542759.87500000000	4834217.50000000000
> 541957.87500000000	4834209.50000000000
> 541156.87500000000	4834201.50000000000
> 540352.87500000000	4834197.50000000000
> 539549.87500000000	4834193.50000000000
> 538742.81250000000	4834191.50000000000
> 537936.81250000000	4834190.50000000000
> 537133.81250000000	4834185.50000000000
> 536331.81250000000	4834180.50000000000
> 544384.87500000000	4833445.50000000000
> 542774.87500000000	4833414.50000000000
> 541167.87500000000	4833395.50000000000
> 539561.81250000000	4833387.50000000000
> 537946.81250000000	4833385.50000000000
> 544392.87500000000	4832643.50000000000
> 543590.87500000000	4832627.50000000000
> 542789.87500000000	4832612.50000000000
> 541984.87500000000	4832600.50000000000
> 541179.87500000000	4832589.50000000000
> 540376.81250000000	4832585.50000000000
> 539573.81250000000	4832581.50000000000
> 537957.81250000000	4832580.50000000000
> 538765.81250000000	4832580.50000000000
> 544401.87500000000	4831836.50000000000
> 542796.87500000000	4831805.50000000000
> 544410.87500000000	4831029.50000000000
> 543607.81250000000	4831014.50000000000
> 542804.81250000000	4830999.50000000000
> 544426.81250000000	4829417.50000000000
> 544432.81250000000	4828612.50000000000
> 544439.81250000000	4827808.50000000000
> 544445.81250000000	4827000.50000000000
> 544451.81250000000	4826193.50000000000
> 581262.12500000000	4851357.00000000000
> 579658.12500000000	4851338.00000000000
> 574847.12500000000	4851324.00000000000
> 576447.12500000000	4851320.00000000000
> 573257.12500000000	4851317.00000000000
> 578046.12500000000	4851312.00000000000
> 570057.12500000000	4851309.00000000000
> 571656.12500000000	4851308.00000000000
> 568458.12500000000	4851294.00000000000
> 566851.12500000000	4851277.00000000000
> 565256.06250000000	4851271.00000000000
> 563617.06250000000	4851230.00000000000
> 555586.00000000000	4851224.00000000000
> 560412.06250000000	4851220.00000000000
> 562020.06250000000	4851220.00000000000
> 547498.93750000000	4851208.00000000000
> 558822.06250000000	4851206.00000000000
> 557185.06250000000	4851198.00000000000
> 553966.00000000000	4851194.00000000000
> 552367.00000000000	4851191.00000000000
> 550727.00000000000	4851184.00000000000
> 549115.93750000000	4851169.00000000000
> 545907.93750000000	4851158.00000000000
> 581275.12500000000	4850554.00000000000
> 582081.18750000000	4850551.00000000000
> 580473.12500000000	4850543.50000000000
> 579671.12500000000	4850534.00000000000
> 578866.12500000000	4850522.00000000000
> 574862.12500000000	4850519.00000000000
> 573268.12500000000	4850518.00000000000
> 574065.12500000000	4850518.00000000000
> 572473.12500000000	4850516.00000000000
> 575664.12500000000	4850516.00000000000
> 571679.12500000000	4850515.00000000000
> 570877.12500000000	4850513.00000000000
> 576466.12500000000	4850513.00000000000
> 570075.12500000000	4850512.00000000000
> 577263.12500000000	4850512.00000000000
> 578061.12500000000	4850511.00000000000
> 569274.12500000000	4850500.00000000000
> 565267.12500000000	4850489.00000000000
> 568473.12500000000	4850489.00000000000
> 566067.12500000000	4850485.00000000000
> 567670.12500000000	4850485.00000000000
> 566867.12500000000	4850482.00000000000
> 564447.06250000000	4850470.00000000000
> 563627.06250000000	4850451.00000000000
> 562825.06250000000	4850442.00000000000
> 562023.06250000000	4850434.00000000000
> 561219.06250000000	4850433.00000000000
> 560415.06250000000	4850432.00000000000
> 559616.06250000000	4850417.00000000000
> 555585.00000000000	4850415.00000000000
> 556381.06250000000	4850404.00000000000
> 558817.06250000000	4850403.00000000000
> 547497.93750000000	4850402.00000000000
> 554779.00000000000	4850399.00000000000
> 557997.06250000000	4850398.00000000000
> 557178.06250000000	4850394.00000000000
> 553974.00000000000	4850383.00000000000
> 548305.93750000000	4850382.00000000000
> 546706.93750000000	4850380.00000000000
> 553167.00000000000	4850379.00000000000
> 552361.00000000000	4850375.00000000000
> 551542.00000000000	4850371.00000000000
> 550723.00000000000	4850367.00000000000
> 549917.93750000000	4850365.00000000000
> 549113.93750000000	4850363.00000000000
> 544319.93750000000	4850358.00000000000
> 545117.93750000000	4850358.00000000000
> 545916.93750000000	4850358.00000000000
> 581285.18750000000	4849747.50000000000
> 579682.12500000000	4849730.50000000000
> 578075.12500000000	4849716.00000000000
> 571683.12500000000	4849713.00000000000
> 573270.12500000000	4849713.00000000000
> 574880.12500000000	4849712.00000000000
> 576482.12500000000	4849710.00000000000
> 570082.12500000000	4849703.00000000000
> 568476.12500000000	4849680.00000000000
> 566869.12500000000	4849678.00000000000
> 565265.12500000000	4849670.00000000000
> 563624.06250000000	4849641.00000000000
> 562014.06250000000	4849631.00000000000
> 560419.06250000000	4849626.00000000000
> 555591.00000000000	4849603.00000000000
> 558813.06250000000	4849600.00000000000
> 557189.06250000000	4849591.00000000000
> 547512.93750000000	4849587.00000000000
> 553980.00000000000	4849572.00000000000
> 552379.00000000000	4849566.00000000000
> 549146.93750000000	4849562.00000000000
> 550747.00000000000	4849559.00000000000
> 544325.93750000000	4849551.00000000000
> 545921.93750000000	4849547.00000000000
> 582098.18750000000	4848945.50000000000
> 581296.18750000000	4848941.50000000000
> 580495.18750000000	4848934.50000000000
> 579694.12500000000	4848927.50000000000
> 578891.12500000000	4848924.50000000000
> 578089.12500000000	4848921.50000000000
> 577294.12500000000	4848915.00000000000
> 571688.12500000000	4848912.00000000000
> 572480.12500000000	4848910.00000000000
> 573273.12500000000	4848908.00000000000
> 576499.12500000000	4848908.00000000000
> 574085.12500000000	4848907.00000000000
> 575698.12500000000	4848907.00000000000
> 574898.12500000000	4848906.00000000000
> 570888.12500000000	4848903.00000000000
> 570089.12500000000	4848895.00000000000
> 569284.12500000000	4848883.00000000000
> 566872.12500000000	4848875.00000000000
> 567675.12500000000	4848873.00000000000
> 568479.12500000000	4848872.00000000000
> 566067.12500000000	4848863.00000000000
> 565263.12500000000	4848851.00000000000
> 564442.12500000000	4848841.00000000000
> 563621.06250000000	4848832.00000000000
> 562813.06250000000	4848830.00000000000
> 562006.06250000000	4848829.00000000000
> 561214.06250000000	4848825.00000000000
> 560423.06250000000	4848821.00000000000
> 559616.06250000000	4848809.00000000000
> 558810.06250000000	4848798.00000000000
> 558005.06250000000	4848793.00000000000
> 555597.06250000000	4848792.00000000000
> 556399.06250000000	4848790.00000000000
> 557201.06250000000	4848789.00000000000
> 554791.00000000000	4848777.00000000000
> 547527.93750000000	4848773.00000000000
> 548353.93750000000	4848767.00000000000
> 549181.00000000000	4848762.00000000000
> 553986.00000000000	4848762.00000000000
> 553192.00000000000	4848760.00000000000
> 552398.00000000000	4848758.00000000000
> 549976.00000000000	4848757.00000000000
> 546727.93750000000	4848755.00000000000
> 551584.00000000000	4848755.00000000000
> 550771.00000000000	4848752.00000000000
> 544331.93750000000	4848743.50000000000
> 545129.93750000000	4848739.50000000000
> 545927.93750000000	4848736.50000000000
> 581304.18750000000	4848141.50000000000
> 579704.18750000000	4848128.50000000000
> 578099.12500000000	4848122.50000000000
> 576514.12500000000	4848111.50000000000
> 571691.12500000000	4848109.00000000000
> 574905.12500000000	4848106.00000000000
> 573278.12500000000	4848105.00000000000
> 570091.12500000000	4848091.00000000000
> 568484.12500000000	4848071.00000000000
> 566875.12500000000	4848065.00000000000
> 565260.12500000000	4848050.00000000000
> 563618.12500000000	4848033.00000000000
> 562005.06250000000	4848027.00000000000
> 560415.06250000000	4848025.00000000000
> 558817.06250000000	4847990.00000000000
> 555600.06250000000	4847988.00000000000
> 557207.06250000000	4847985.00000000000
> 547538.93750000000	4847963.50000000000
> 553994.00000000000	4847960.00000000000
> 549177.00000000000	4847951.00000000000
> 552398.00000000000	4847951.00000000000
> 550783.00000000000	4847949.00000000000
> 544338.93750000000	4847939.50000000000
> 545939.93750000000	4847935.50000000000
> 582117.18750000000	4847351.50000000000
> 581312.18750000000	4847341.50000000000
> 580513.18750000000	4847335.50000000000
> 579715.18750000000	4847330.50000000000
> 578912.18750000000	4847327.50000000000
> 578109.12500000000	4847324.50000000000
> 577319.12500000000	4847320.50000000000
> 576530.12500000000	4847316.50000000000
> 575721.12500000000	4847311.50000000000
> 574913.12500000000	4847306.50000000000
> 571694.12500000000	4847306.00000000000
> 572488.12500000000	4847304.00000000000
> 574098.12500000000	4847304.00000000000
> 573283.12500000000	4847302.00000000000
> 570893.12500000000	4847297.00000000000
> 570093.12500000000	4847288.00000000000
> 569291.12500000000	4847279.00000000000
> 568490.12500000000	4847271.00000000000
> 567684.12500000000	4847263.00000000000
> 566878.12500000000	4847255.00000000000
> 566068.12500000000	4847252.00000000000
> 565258.12500000000	4847250.00000000000
> 564436.12500000000	4847242.00000000000
> 563615.12500000000	4847234.00000000000
> 560408.06250000000	4847230.00000000000
> 562809.12500000000	4847229.00000000000
> 561206.06250000000	4847227.00000000000
> 562004.06250000000	4847225.00000000000
> 559616.06250000000	4847206.00000000000
> 555604.06250000000	4847184.00000000000
> 556409.06250000000	4847183.00000000000
> 558824.06250000000	4847183.00000000000
> 557214.06250000000	4847182.00000000000
> 558019.06250000000	4847182.00000000000
> 554803.06250000000	4847171.00000000000
> 554002.00000000000	4847158.00000000000
> 547551.00000000000	4847154.50000000000
> 553200.00000000000	4847151.00000000000
> 548362.00000000000	4847147.50000000000
> 550795.00000000000	4847146.00000000000
> 551596.00000000000	4847145.00000000000
> 552398.00000000000	4847145.00000000000
> 546751.93750000000	4847144.50000000000
> 549984.00000000000	4847142.50000000000
> 549173.00000000000	4847140.50000000000
> 544345.93750000000	4847135.50000000000
> 545148.93750000000	4847134.50000000000
> 545952.93750000000	4847134.50000000000
> 581323.18750000000	4846533.50000000000
> 579715.18750000000	4846521.50000000000
> 578112.18750000000	4846514.50000000000
> 576527.12500000000	4846510.50000000000
> 571699.12500000000	4846503.00000000000
> 574912.12500000000	4846502.50000000000
> 573294.12500000000	4846494.50000000000
> 570096.12500000000	4846484.00000000000
> 568496.12500000000	4846467.00000000000
> 566875.12500000000	4846448.00000000000
> 565251.12500000000	4846440.00000000000
> 563618.12500000000	4846427.00000000000
> 562012.06250000000	4846418.00000000000
> 560412.06250000000	4846401.00000000000
> 558834.06250000000	4846375.00000000000
> 557234.06250000000	4846372.00000000000
> 555632.06250000000	4846365.00000000000
> 554011.06250000000	4846350.00000000000
> 547566.00000000000	4846343.50000000000
> 552409.00000000000	4846342.00000000000
> 550802.00000000000	4846334.50000000000
> 549183.00000000000	4846333.50000000000
> 545957.93750000000	4846332.50000000000
> 582140.18750000000	4845730.50000000000
> 581335.18750000000	4845725.50000000000
> 580525.18750000000	4845719.50000000000
> 579716.18750000000	4845713.50000000000
> 578916.18750000000	4845708.50000000000
> 576525.12500000000	4845705.50000000000
> 577320.18750000000	4845704.50000000000
> 578116.18750000000	4845704.50000000000
> 575718.12500000000	4845701.50000000000
> 571704.12500000000	4845699.50000000000
> 574912.12500000000	4845698.50000000000
> 572504.12500000000	4845693.50000000000
> 574108.12500000000	4845692.50000000000
> 570901.12500000000	4845689.50000000000
> 573305.12500000000	4845687.50000000000
> 570099.12500000000	4845681.00000000000
> 569300.12500000000	4845672.00000000000
> 568502.12500000000	4845664.00000000000
> 567687.12500000000	4845653.00000000000
> 566873.12500000000	4845642.00000000000
> 566059.12500000000	4845636.00000000000
> 565245.12500000000	4845630.00000000000
> 564433.12500000000	4845625.00000000000
> 563622.12500000000	4845621.00000000000
> 562821.12500000000	4845616.00000000000
> 562021.12500000000	4845611.00000000000
> 561218.06250000000	4845591.00000000000
> 560416.06250000000	4845572.00000000000
> 559630.06250000000	4845569.00000000000
> 558844.06250000000	4845567.00000000000
> 558049.06250000000	4845564.00000000000
> 557255.06250000000	4845562.00000000000
> 556457.06250000000	4845554.00000000000
> 555660.06250000000	4845547.00000000000
> 554840.06250000000	4845544.00000000000
> 554021.06250000000	4845541.50000000000
> 553221.00000000000	4845539.50000000000
> 552421.00000000000	4845538.50000000000
> 547582.00000000000	4845532.50000000000
> 546773.00000000000	4845531.50000000000
> 551615.00000000000	4845531.50000000000
> 545964.00000000000	4845530.50000000000
> 548388.00000000000	4845529.50000000000
> 549194.00000000000	4845527.50000000000
> 550001.00000000000	4845525.50000000000
> 550809.00000000000	4845524.50000000000
> 545159.93750000000	4845523.50000000000
> 544356.93750000000	4845516.50000000000
> 581346.18750000000	4844925.50000000000
> 576526.18750000000	4844915.50000000000
> 579720.18750000000	4844914.50000000000
> 578115.18750000000	4844909.50000000000
> 574928.12500000000	4844898.50000000000
> 571709.12500000000	4844888.50000000000
> 573319.12500000000	4844886.50000000000
> 570102.12500000000	4844857.50000000000
> 568503.12500000000	4844856.50000000000
> 566896.12500000000	4844830.00000000000
> 562012.12500000000	4844826.00000000000
> 565276.12500000000	4844819.00000000000
> 563629.12500000000	4844816.00000000000
> 560396.06250000000	4844803.00000000000
> 558820.06250000000	4844781.00000000000
> 557234.06250000000	4844754.00000000000
> 555650.06250000000	4844752.50000000000
> 554026.06250000000	4844749.50000000000
> 545963.00000000000	4844748.50000000000
> 552433.00000000000	4844746.50000000000
> 547587.00000000000	4844733.50000000000
> 549203.00000000000	4844717.50000000000
> 550818.00000000000	4844702.50000000000
> 582163.18750000000	4844137.50000000000
> 576528.12500000000	4844126.50000000000
> 581357.18750000000	4844125.50000000000
> 577321.18750000000	4844120.50000000000
> 580540.18750000000	4844120.50000000000
> 578115.18750000000	4844115.50000000000
> 578919.18750000000	4844115.50000000000
> 579724.18750000000	4844115.50000000000
> 575736.12500000000	4844112.50000000000
> 574945.12500000000	4844099.50000000000
> 574139.12500000000	4844092.50000000000
> 573333.12500000000	4844086.50000000000
> 572523.12500000000	4844082.50000000000
> 571714.12500000000	4844078.50000000000
> 570910.12500000000	4844056.50000000000
> 568504.12500000000	4844049.50000000000
> 569305.12500000000	4844042.50000000000
> 562003.12500000000	4844041.00000000000
> 561189.06250000000	4844038.00000000000
> 570106.12500000000	4844035.50000000000
> 560376.06250000000	4844035.00000000000
> 567712.12500000000	4844033.50000000000
> 562820.12500000000	4844026.00000000000
> 566920.12500000000	4844018.50000000000
> 559586.06250000000	4844015.00000000000
> 566114.12500000000	4844013.00000000000
> 563637.12500000000	4844012.00000000000
> 564472.12500000000	4844010.00000000000
> 565308.12500000000	4844008.00000000000
> 558796.06250000000	4843996.00000000000
> 558004.06250000000	4843971.00000000000
> 545962.00000000000	4843967.50000000000
> 555640.06250000000	4843958.50000000000
> 554032.06250000000	4843957.50000000000
> 554836.06250000000	4843957.50000000000
> 553239.06250000000	4843955.50000000000
> 552446.00000000000	4843954.50000000000
> 556426.06250000000	4843952.50000000000
> 546777.00000000000	4843950.50000000000
> 557213.06250000000	4843946.50000000000
> 545160.00000000000	4843937.50000000000
> 547592.00000000000	4843934.50000000000
> 548402.00000000000	4843921.50000000000
> 551636.00000000000	4843917.50000000000
> 549213.00000000000	4843908.50000000000
> 544357.93750000000	4843907.50000000000
> 550020.00000000000	4843894.50000000000
> 550827.00000000000	4843881.50000000000
> 581372.18750000000	4843321.50000000000
> 576554.12500000000	4843318.50000000000
> 578144.12500000000	4843307.50000000000
> 579753.12500000000	4843307.50000000000
> 574958.12500000000	4843303.50000000000
> 573341.12500000000	4843282.50000000000
> 571723.12500000000	4843267.50000000000
> 568510.12500000000	4843239.50000000000
> 562005.06250000000	4843235.00000000000
> 570114.12500000000	4843231.50000000000
> 560386.06250000000	4843228.00000000000
> 566916.12500000000	4843211.50000000000
> 563643.06250000000	4843210.00000000000
> 565305.12500000000	4843205.00000000000
> 558784.06250000000	4843194.00000000000
> 545978.00000000000	4843161.50000000000
> 555639.06250000000	4843157.50000000000
> 552444.00000000000	4843149.50000000000
> 554037.00000000000	4843147.50000000000
> 557208.06250000000	4843137.50000000000
> 547616.00000000000	4843134.50000000000
> 549224.00000000000	4843111.50000000000
> 550848.00000000000	4843084.50000000000
> 581387.12500000000	4842517.50000000000
> 576581.12500000000	4842511.50000000000
> 575776.12500000000	4842509.50000000000
> 574971.12500000000	4842508.50000000000
> 580584.12500000000	4842508.50000000000
> 577377.12500000000	4842505.50000000000
> 579782.12500000000	4842500.50000000000
> 578174.12500000000	4842499.50000000000
> 578978.12500000000	4842499.50000000000
> 574160.12500000000	4842493.50000000000
> 573349.12500000000	4842479.50000000000
> 572540.12500000000	4842468.50000000000
> 571732.12500000000	4842457.50000000000
> 570927.12500000000	4842442.50000000000
> 568516.12500000000	4842430.50000000000
> 562007.06250000000	4842430.00000000000
> 569319.12500000000	4842429.50000000000
> 570122.12500000000	4842428.50000000000
> 561202.06250000000	4842425.00000000000
> 560397.06250000000	4842421.00000000000
> 562828.06250000000	4842419.00000000000
> 567714.12500000000	4842417.50000000000
> 563649.06250000000	4842408.00000000000
> 559584.06250000000	4842407.00000000000
> 564476.06250000000	4842405.00000000000
> 566913.06250000000	4842404.50000000000
> 566108.06250000000	4842403.50000000000
> 565303.06250000000	4842402.50000000000
> 558772.06250000000	4842393.00000000000
> 557987.06250000000	4842360.50000000000
> 555639.06250000000	4842356.50000000000
> 545993.93750000000	4842355.50000000000
> 554841.00000000000	4842347.50000000000
> 552442.00000000000	4842345.50000000000
> 546817.00000000000	4842344.50000000000
> 556421.06250000000	4842342.50000000000
> 553242.00000000000	4842341.50000000000
> 554043.00000000000	4842338.50000000000
> 547641.00000000000	4842334.50000000000
> 545174.93750000000	4842330.50000000000
> 557203.06250000000	4842329.50000000000
> 548438.00000000000	4842324.50000000000
> 551655.00000000000	4842316.50000000000
> 549235.00000000000	4842315.50000000000
> 544356.93750000000	4842305.50000000000
> 550052.00000000000	4842301.50000000000
> 550869.00000000000	4842287.50000000000
> 581398.12500000000	4841720.50000000000
> 576589.12500000000	4841709.50000000000
> 579794.12500000000	4841702.50000000000
> 574973.12500000000	4841701.50000000000
> 578196.12500000000	4841697.50000000000
> 573357.12500000000	4841672.50000000000
> 571748.12500000000	4841652.50000000000
> 568517.06250000000	4841624.50000000000
> 570131.06250000000	4841624.50000000000
> 562021.06250000000	4841618.00000000000
> 560402.06250000000	4841610.00000000000
> 563673.06250000000	4841604.00000000000
> 566917.06250000000	4841595.50000000000
> 565297.06250000000	4841593.50000000000
> 558787.06250000000	4841588.00000000000
> 555644.00000000000	4841557.50000000000
> 554047.00000000000	4841548.50000000000
> 546000.93750000000	4841545.50000000000
> 552442.00000000000	4841544.50000000000
> 557225.06250000000	4841542.50000000000
> 547637.93750000000	4841530.50000000000
> 549244.00000000000	4841505.50000000000
> 544356.93750000000	4841500.50000000000
> 550860.00000000000	4841487.50000000000
> 581409.12500000000	4840923.50000000000
> 580607.12500000000	4840914.50000000000
> 576597.12500000000	4840907.50000000000
> 579806.12500000000	4840905.50000000000
> 577408.12500000000	4840901.50000000000
> 575786.12500000000	4840900.50000000000
> 579012.12500000000	4840900.50000000000
> 578219.12500000000	4840895.50000000000
> 574976.12500000000	4840894.50000000000
> 574171.12500000000	4840879.50000000000
> 573366.12500000000	4840865.50000000000
> 572565.06250000000	4840856.50000000000
> 571764.06250000000	4840847.50000000000
> 570952.06250000000	4840834.50000000000
> 570140.06250000000	4840821.50000000000
> 569329.06250000000	4840819.50000000000
> 568519.06250000000	4840818.50000000000
> 562035.06250000000	4840806.00000000000
> 562866.06250000000	4840803.00000000000
> 567720.06250000000	4840802.50000000000
> 561221.06250000000	4840802.00000000000
> 563697.06250000000	4840800.50000000000
> 560407.06250000000	4840799.00000000000
> 564494.06250000000	4840792.50000000000
> 559604.06250000000	4840791.00000000000
> 566921.06250000000	4840787.50000000000
> 566106.06250000000	4840786.50000000000
> 565292.06250000000	4840785.50000000000
> 558802.06250000000	4840782.50000000000
> 558024.00000000000	4840769.50000000000
> 554051.00000000000	4840758.50000000000
> 554850.00000000000	4840758.50000000000
> 555650.00000000000	4840758.50000000000
> 556448.00000000000	4840757.50000000000
> 557247.00000000000	4840756.50000000000
> 553247.00000000000	4840750.50000000000
> 552443.00000000000	4840743.50000000000
> 546007.93750000000	4840735.50000000000
> 546820.93750000000	4840731.50000000000
> 547634.93750000000	4840727.50000000000
> 545181.93750000000	4840715.50000000000
> 551647.00000000000	4840715.50000000000
> 548443.93750000000	4840711.50000000000
> 549254.00000000000	4840696.50000000000
> 544356.93750000000	4840695.50000000000
> 550052.00000000000	4840692.50000000000
> 550851.00000000000	4840688.50000000000
> 581421.12500000000	4840125.50000000000
> 576605.12500000000	4840110.50000000000
> 579812.12500000000	4840104.50000000000
> 578218.12500000000	4840095.50000000000
> 574986.06250000000	4840081.50000000000
> 573369.06250000000	4840065.50000000000
> 571770.06250000000	4840047.50000000000
> 570151.06250000000	4840026.50000000000
> 568532.06250000000	4840011.50000000000
> 562045.06250000000	4840002.00000000000
> 560424.06250000000	4839997.00000000000
> 563702.06250000000	4839992.50000000000
> 566925.06250000000	4839982.50000000000
> 558824.00000000000	4839981.50000000000
> 565306.06250000000	4839976.50000000000
> 557250.00000000000	4839959.50000000000
> 554044.00000000000	4839949.50000000000
> 555645.00000000000	4839947.50000000000
> 552435.00000000000	4839938.50000000000
> 546011.93750000000	4839931.50000000000
> 547633.93750000000	4839915.50000000000
> 549246.93750000000	4839900.50000000000
> 544357.93750000000	4839892.50000000000
> 550840.00000000000	4839889.50000000000
> 581434.12500000000	4839328.50000000000
> 580626.12500000000	4839316.50000000000
> 576613.06250000000	4839314.50000000000
> 577415.06250000000	4839304.50000000000
> 579819.12500000000	4839304.50000000000
> 579018.06250000000	4839299.50000000000
> 578218.06250000000	4839295.50000000000
> 575805.06250000000	4839291.50000000000
> 574997.06250000000	4839269.50000000000
> 574185.06250000000	4839267.50000000000
> 573373.06250000000	4839265.50000000000
> 572575.06250000000	4839256.50000000000
> 571777.06250000000	4839247.50000000000
> 570970.06250000000	4839239.50000000000
> 570163.06250000000	4839231.50000000000
> 569354.06250000000	4839218.50000000000
> 568546.06250000000	4839205.50000000000
> 562055.06250000000	4839197.50000000000
> 561248.00000000000	4839195.50000000000
> 560441.00000000000	4839195.00000000000
> 562881.06250000000	4839191.50000000000
> 567738.06250000000	4839191.50000000000
> 559643.00000000000	4839187.50000000000
> 563707.06250000000	4839185.50000000000
> 558846.00000000000	4839181.50000000000
> 566930.06250000000	4839177.50000000000
> 564513.06250000000	4839176.50000000000
> 566125.06250000000	4839172.50000000000
> 558050.00000000000	4839171.50000000000
> 565320.06250000000	4839167.50000000000
> 557254.00000000000	4839162.50000000000
> 556447.00000000000	4839149.50000000000
> 554038.00000000000	4839141.50000000000
> 554839.00000000000	4839139.50000000000
> 553232.00000000000	4839137.50000000000
> 555641.00000000000	4839137.50000000000
> 552427.00000000000	4839133.50000000000
> 546015.93750000000	4839128.50000000000
> 546823.93750000000	4839115.50000000000
> 551628.00000000000	4839112.50000000000
> 545186.93750000000	4839108.50000000000
> 549240.93750000000	4839105.50000000000
> 548436.93750000000	4839104.50000000000
> 547632.93750000000	4839103.50000000000
> 550034.93750000000	4839098.50000000000
> 550829.93750000000	4839091.50000000000
> 544358.93750000000	4839089.50000000000
> 581441.06250000000	4838524.50000000000
> 576619.06250000000	4838498.50000000000
> 579823.06250000000	4838498.50000000000
> 578221.06250000000	4838493.50000000000
> 575001.06250000000	4838471.50000000000
> 573380.06250000000	4838463.50000000000
> 571779.06250000000	4838449.50000000000
> 570172.06250000000	4838418.50000000000
> 568563.06250000000	4838402.50000000000
> 562071.00000000000	4838384.50000000000
> 563719.00000000000	4838382.50000000000
> 560457.00000000000	4838380.50000000000
> 566952.06250000000	4838375.50000000000
> 558857.00000000000	4838370.50000000000
> 565342.06250000000	4838356.50000000000
> 557260.00000000000	4838353.50000000000
> 554040.00000000000	4838333.50000000000
> 555656.00000000000	4838332.50000000000
> 552428.93750000000	4838320.50000000000
> 546008.93750000000	4838311.50000000000
> 547626.93750000000	4838295.50000000000
> 549236.93750000000	4838294.50000000000
> 550824.93750000000	4838290.50000000000
> 544359.93750000000	4838278.50000000000
> 581449.06250000000	4837721.50000000000
> 580638.06250000000	4837706.50000000000
> 578224.06250000000	4837692.50000000000
> 579025.06250000000	4837692.50000000000
> 579827.06250000000	4837692.50000000000
> 577424.06250000000	4837687.50000000000
> 576625.06250000000	4837682.50000000000
> 575815.06250000000	4837678.50000000000
> 575006.06250000000	4837674.50000000000
> 574196.06250000000	4837668.50000000000
> 573387.06250000000	4837662.50000000000
> 572584.06250000000	4837656.50000000000
> 571782.06250000000	4837651.50000000000
> 570981.06250000000	4837628.50000000000
> 570181.06250000000	4837606.50000000000
> 569380.06250000000	4837602.50000000000
> 568580.06250000000	4837599.50000000000
> 567777.00000000000	4837586.50000000000
> 563731.00000000000	4837579.50000000000
> 562909.00000000000	4837575.50000000000
> 566975.00000000000	4837574.50000000000
> 562088.00000000000	4837572.50000000000
> 561281.00000000000	4837569.50000000000
> 560474.00000000000	4837567.50000000000
> 559671.00000000000	4837563.50000000000
> 564548.00000000000	4837562.50000000000
> 566170.00000000000	4837560.50000000000
> 558868.00000000000	4837559.50000000000
> 558067.00000000000	4837551.50000000000
> 565365.00000000000	4837546.50000000000
> 557266.00000000000	4837544.50000000000
> 556469.00000000000	4837536.50000000000
> 555672.00000000000	4837528.50000000000
> 554857.00000000000	4837526.50000000000
> 554041.93750000000	4837525.50000000000
> 553236.93750000000	4837516.50000000000
> 552431.93750000000	4837508.50000000000
> 551625.93750000000	4837498.50000000000
> 546002.93750000000	4837494.50000000000
> 546811.93750000000	4837491.50000000000
> 550819.93750000000	4837489.50000000000
> 547620.93750000000	4837488.50000000000
> 550026.93750000000	4837486.50000000000
> 548426.93750000000	4837485.50000000000
> 549233.93750000000	4837483.50000000000
> 545181.93750000000	4837480.50000000000
> 544360.93750000000	4837467.50000000000
> 581448.06250000000	4836922.50000000000
> 579835.06250000000	4836895.50000000000
> 578223.06250000000	4836888.50000000000
> 576630.06250000000	4836881.50000000000
> 575004.06250000000	4836873.50000000000
> 573398.06250000000	4836858.50000000000
> 571790.06250000000	4836850.50000000000
> 570187.00000000000	4836823.50000000000
> 568582.00000000000	4836801.50000000000
> 563734.00000000000	4836780.50000000000
> 566960.00000000000	4836778.50000000000
> 562117.00000000000	4836769.50000000000
> 560503.00000000000	4836759.50000000000
> 565353.00000000000	4836758.50000000000
> 558891.00000000000	4836751.50000000000
> 557286.00000000000	4836736.50000000000
> 555682.93750000000	4836724.50000000000
> 554045.93750000000	4836716.50000000000
> 552432.93750000000	4836704.50000000000
> 550821.93750000000	4836689.50000000000
> 547610.93750000000	4836679.50000000000
> 549224.93750000000	4836678.50000000000
> 545997.93750000000	4836676.50000000000
> 581447.06250000000	4836123.50000000000
> 580645.06250000000	4836111.50000000000
> 579843.06250000000	4836099.50000000000
> 579032.06250000000	4836092.50000000000
> 578222.06250000000	4836085.50000000000
> 577429.06250000000	4836083.50000000000
> 576636.06250000000	4836081.50000000000
> 575819.06250000000	4836076.50000000000
> 575003.06250000000	4836072.50000000000
> 574206.00000000000	4836063.50000000000
> 573409.00000000000	4836054.50000000000
> 572603.00000000000	4836052.50000000000
> 571798.00000000000	4836050.50000000000
> 570995.00000000000	4836045.50000000000
> 570193.00000000000	4836041.50000000000
> 569389.00000000000	4836022.50000000000
> 568585.00000000000	4836004.50000000000
> 567765.00000000000	4835993.50000000000
> 566946.00000000000	4835982.50000000000
> 563737.00000000000	4835981.50000000000
> 564539.00000000000	4835976.50000000000
> 566144.00000000000	4835976.50000000000
> 562942.00000000000	4835973.50000000000
> 565342.00000000000	4835971.50000000000
> 562147.00000000000	4835966.50000000000
> 561340.00000000000	4835958.50000000000
> 560533.00000000000	4835951.50000000000
> 559724.00000000000	4835947.50000000000
> 558915.00000000000	4835943.50000000000
> 558111.00000000000	4835936.50000000000
> 557306.93750000000	4835929.50000000000
> 556499.93750000000	4835925.50000000000
> 555693.93750000000	4835921.50000000000
> 554871.93750000000	4835914.50000000000
> 554049.93750000000	4835907.50000000000
> 553241.93750000000	4835903.50000000000
> 552434.93750000000	4835900.50000000000
> 551628.93750000000	4835895.50000000000
> 550823.93750000000	4835890.50000000000
> 550019.93750000000	4835882.50000000000
> 549215.93750000000	4835874.50000000000
> 548408.93750000000	4835872.50000000000
> 547601.93750000000	4835870.50000000000
> 546796.87500000000	4835864.50000000000
> 545992.87500000000	4835859.50000000000
> 545178.87500000000	4835858.50000000000
> 544365.87500000000	4835857.50000000000
> 544365.87500000000	4835857.50000000000
> 581447.06250000000	4835324.50000000000
> 579842.06250000000	4835300.50000000000
> 578220.00000000000	4835292.50000000000
> 576633.00000000000	4835275.50000000000
> 575012.00000000000	4835267.50000000000
> 573413.00000000000	4835257.50000000000
> 571812.00000000000	4835246.50000000000
> 570202.00000000000	4835244.50000000000
> 568597.00000000000	4835212.50000000000
> 566971.00000000000	4835186.50000000000
> 565357.00000000000	4835176.50000000000
> 563749.00000000000	4835173.50000000000
> 562148.00000000000	4835143.50000000000
> 558920.93750000000	4835137.50000000000
> 557310.93750000000	4835132.50000000000
> 560542.00000000000	4835125.50000000000
> 555701.93750000000	4835118.50000000000
> 552442.93750000000	4835112.50000000000
> 554061.93750000000	4835106.50000000000
> 550832.93750000000	4835101.50000000000
> 549221.93750000000	4835089.50000000000
> 547605.87500000000	4835083.50000000000
> 545994.87500000000	4835073.50000000000
> 581447.06250000000	4834526.50000000000
> 580644.00000000000	4834514.50000000000
> 579842.00000000000	4834502.50000000000
> 579030.00000000000	4834501.50000000000
> 578219.00000000000	4834500.50000000000
> 577424.00000000000	4834484.50000000000
> 576630.00000000000	4834469.50000000000
> 575826.00000000000	4834466.50000000000
> 575022.00000000000	4834463.50000000000
> 574219.00000000000	4834461.50000000000
> 573417.00000000000	4834460.50000000000
> 572621.00000000000	4834451.50000000000
> 570211.00000000000	4834448.50000000000
> 571018.00000000000	4834445.50000000000
> 571826.00000000000	4834443.50000000000
> 569410.00000000000	4834434.50000000000
> 568610.00000000000	4834420.50000000000
> 567803.00000000000	4834405.50000000000
> 566997.00000000000	4834391.50000000000
> 566185.00000000000	4834386.50000000000
> 565373.00000000000	4834382.50000000000
> 564567.00000000000	4834374.50000000000
> 563762.00000000000	4834366.50000000000
> 562956.00000000000	4834343.50000000000
> 557315.93750000000	4834336.50000000000
> 558121.93750000000	4834333.50000000000
> 558927.93750000000	4834331.50000000000
> 556512.93750000000	4834326.50000000000
> 552451.93750000000	4834324.50000000000
> 562150.00000000000	4834321.50000000000
> 551646.93750000000	4834318.50000000000
> 555710.93750000000	4834316.50000000000
> 553262.93750000000	4834315.50000000000
> 559739.93750000000	4834315.50000000000
> 550842.93750000000	4834312.50000000000
> 554892.93750000000	4834311.50000000000
> 561350.93750000000	4834310.50000000000
> 550034.93750000000	4834308.50000000000
> 554074.93750000000	4834306.50000000000
> 549227.87500000000	4834305.50000000000
> 548418.87500000000	4834300.50000000000
> 560551.93750000000	4834299.50000000000
> 547609.87500000000	4834296.50000000000
> 546802.87500000000	4834291.50000000000
> 545996.87500000000	4834287.50000000000
> 545186.87500000000	4834267.50000000000
> 544376.87500000000	4834248.50000000000
> 581457.00000000000	4833732.50000000000
> 579853.00000000000	4833711.50000000000
> 578226.00000000000	4833700.50000000000
> 576636.00000000000	4833667.50000000000
> 575031.00000000000	4833663.50000000000
> 573422.00000000000	4833657.50000000000
> 571827.00000000000	4833650.50000000000
> 570217.00000000000	4833637.50000000000
> 568611.00000000000	4833622.50000000000
> 567003.00000000000	4833596.50000000000
> 565384.00000000000	4833583.50000000000
> 563763.93750000000	4833556.50000000000
> 557330.93750000000	4833529.50000000000
> 558945.93750000000	4833524.50000000000
> 552465.93750000000	4833518.50000000000
> 562156.93750000000	4833514.50000000000
> 555725.93750000000	4833513.50000000000
> 550854.87500000000	4833506.50000000000
> 554079.93750000000	4833505.50000000000
> 549239.87500000000	4833499.50000000000
> 560562.93750000000	4833496.50000000000
> 547621.87500000000	4833489.50000000000
> 546007.87500000000	4833483.50000000000
> 581467.00000000000	4832939.50000000000
> 580666.00000000000	4832930.50000000000
> 579865.00000000000	4832921.50000000000
> 579049.00000000000	4832911.50000000000
> 578233.00000000000	4832901.50000000000
> 577437.00000000000	4832883.50000000000
> 576642.00000000000	4832866.50000000000
> 575841.00000000000	4832865.50000000000
> 575041.00000000000	4832864.50000000000
> 574234.00000000000	4832859.50000000000
> 571828.00000000000	4832858.50000000000
> 572628.00000000000	4832856.50000000000
> 573428.00000000000	4832854.50000000000
> 571026.00000000000	4832842.50000000000
> 570224.00000000000	4832826.50000000000
> 569418.00000000000	4832825.50000000000
> 568612.93750000000	4832824.50000000000
> 567810.93750000000	4832813.50000000000
> 567008.93750000000	4832802.50000000000
> 566201.93750000000	4832793.50000000000
> 565394.93750000000	4832784.50000000000
> 564580.93750000000	4832765.50000000000
> 563766.93750000000	4832747.50000000000
> 562964.93750000000	4832727.50000000000
> 557345.93750000000	4832722.50000000000
> 558154.93750000000	4832719.50000000000
> 558964.93750000000	4832717.50000000000
> 556542.93750000000	4832716.50000000000
> 552479.87500000000	4832712.50000000000
> 555740.93750000000	4832711.50000000000
> 553282.93750000000	4832708.50000000000
> 554912.93750000000	4832708.50000000000
> 562163.93750000000	4832707.50000000000
> 551672.87500000000	4832706.50000000000
> 554085.93750000000	4832705.50000000000
> 559769.93750000000	4832705.50000000000
> 550866.87500000000	4832701.50000000000
> 561368.93750000000	4832700.50000000000
> 550058.87500000000	4832697.50000000000
> 549251.87500000000	4832693.50000000000
> 560574.93750000000	4832693.50000000000
> 548442.87500000000	4832687.50000000000
> 547633.87500000000	4832682.50000000000
> 546825.87500000000	4832681.50000000000
> 546018.87500000000	4832680.50000000000
> 545205.87500000000	4832661.50000000000
> 544392.87500000000	4832643.50000000000
> 581476.00000000000	4832138.50000000000
> 579873.00000000000	4832116.50000000000
> 578245.00000000000	4832101.50000000000
> 576648.00000000000	4832074.50000000000
> 575038.00000000000	4832061.50000000000
> 573441.00000000000	4832052.50000000000
> 571835.93750000000	4832043.50000000000
> 570233.93750000000	4832033.50000000000
> 568621.93750000000	4832028.50000000000
> 567014.93750000000	4832006.50000000000
> 565406.93750000000	4831986.50000000000
> 563776.93750000000	4831957.50000000000
> 557360.93750000000	4831920.50000000000
> 558973.93750000000	4831916.50000000000
> 555755.93750000000	4831910.50000000000
> 552481.87500000000	4831909.50000000000
> 562171.93750000000	4831909.50000000000
> 554087.87500000000	4831898.50000000000
> 550861.87500000000	4831895.50000000000
> 549252.87500000000	4831890.50000000000
> 560583.93750000000	4831890.50000000000
> 547638.87500000000	4831877.50000000000
> 546023.87500000000	4831876.50000000000
> 544401.87500000000	4831836.50000000000
> 581486.00000000000	4831338.50000000000
> 580683.00000000000	4831325.50000000000
> 579881.00000000000	4831312.50000000000
> 579069.00000000000	4831306.50000000000
> 578258.00000000000	4831301.50000000000
> 577455.93750000000	4831292.50000000000
> 576653.93750000000	4831283.50000000000
> 575844.93750000000	4831271.50000000000
> 575035.93750000000	4831259.50000000000
> 574244.93750000000	4831255.50000000000
> 573453.93750000000	4831251.50000000000
> 570243.93750000000	4831240.50000000000
> 572648.93750000000	4831239.50000000000
> 569436.93750000000	4831236.50000000000
> 571043.93750000000	4831234.50000000000
> 568630.93750000000	4831232.50000000000
> 571843.93750000000	4831228.50000000000
> 567825.93750000000	4831221.50000000000
> 567020.93750000000	4831210.50000000000
> 566219.93750000000	4831199.50000000000
> 565418.93750000000	4831188.50000000000
> 564602.93750000000	4831178.50000000000
> 563786.93750000000	4831168.50000000000
> 562983.93750000000	4831140.50000000000
> 557375.93750000000	4831118.50000000000
> 558179.93750000000	4831116.50000000000
> 558983.93750000000	4831115.50000000000
> 556572.87500000000	4831113.50000000000
> 562180.93750000000	4831112.50000000000
> 555770.87500000000	4831109.50000000000
> 552483.87500000000	4831106.50000000000
> 559787.93750000000	4831101.50000000000
> 554930.87500000000	4831100.50000000000
> 561386.93750000000	4831099.50000000000
> 553286.87500000000	4831098.50000000000
> 551670.87500000000	4831097.50000000000
> 554090.87500000000	4831091.50000000000
> 550857.87500000000	4831089.50000000000
> 550055.87500000000	4831088.50000000000
> 549253.87500000000	4831087.50000000000
> 560592.93750000000	4831087.50000000000
> 548448.87500000000	4831080.50000000000
> 547644.87500000000	4831073.50000000000
> 546028.87500000000	4831072.50000000000
> 546836.87500000000	4831072.50000000000
> 545219.87500000000	4831050.50000000000
> 544410.87500000000	4831029.50000000000
> 581499.00000000000	4830538.50000000000
> 579882.93750000000	4830520.50000000000
> 578263.93750000000	4830494.50000000000
> 576656.93750000000	4830485.50000000000
> 575042.93750000000	4830457.50000000000
> 573458.93750000000	4830452.50000000000
> 571849.93750000000	4830437.50000000000
> 570253.93750000000	4830435.50000000000
> 568641.93750000000	4830425.50000000000
> 567027.93750000000	4830403.50000000000
> 565418.93750000000	4830379.50000000000
> 563795.93750000000	4830365.50000000000
> 562196.93750000000	4830319.50000000000
> 557389.87500000000	4830316.50000000000
> 558993.93750000000	4830314.50000000000
> 555783.87500000000	4830310.50000000000
> 560601.93750000000	4830307.50000000000
> 552489.87500000000	4830301.50000000000
> 554100.87500000000	4830297.50000000000
> 550872.87500000000	4830287.50000000000
> 549268.87500000000	4830279.50000000000
> 546043.87500000000	4830263.50000000000
> 547657.87500000000	4830262.50000000000
> 544418.81250000000	4830223.50000000000
> 581511.93750000000	4829738.50000000000
> 580698.93750000000	4829733.50000000000
> 579885.93750000000	4829728.50000000000
> 579077.93750000000	4829708.50000000000
> 576659.93750000000	4829688.50000000000
> 577464.93750000000	4829688.50000000000
> 578270.93750000000	4829688.50000000000
> 575854.93750000000	4829672.50000000000
> 575050.93750000000	4829656.50000000000
> 574257.93750000000	4829654.50000000000
> 573464.93750000000	4829653.50000000000
> 572659.93750000000	4829649.50000000000
> 571855.93750000000	4829646.50000000000
> 571059.93750000000	4829638.50000000000
> 570263.93750000000	4829630.50000000000
> 569457.93750000000	4829624.50000000000
> 568652.93750000000	4829618.50000000000
> 567843.93750000000	4829607.50000000000
> 567035.93750000000	4829597.50000000000
> 566226.93750000000	4829584.50000000000
> 565418.93750000000	4829571.50000000000
> 564611.93750000000	4829567.50000000000
> 563804.93750000000	4829563.50000000000
> 563008.93750000000	4829545.50000000000
> 560611.87500000000	4829528.50000000000
> 561411.93750000000	4829527.50000000000
> 562212.93750000000	4829527.50000000000
> 559807.87500000000	4829521.50000000000
> 557403.87500000000	4829515.50000000000
> 558203.87500000000	4829514.50000000000
> 559004.87500000000	4829514.50000000000
> 556599.87500000000	4829513.50000000000
> 555796.87500000000	4829512.50000000000
> 554953.87500000000	4829507.50000000000
> 554111.87500000000	4829503.50000000000
> 553303.87500000000	4829499.50000000000
> 552496.87500000000	4829496.50000000000
> 551691.87500000000	4829491.50000000000
> 550887.87500000000	4829486.50000000000
> 550085.87500000000	4829478.50000000000
> 549283.87500000000	4829471.50000000000
> 548476.87500000000	4829461.50000000000
> 546059.81250000000	4829455.50000000000
> 546864.81250000000	4829453.50000000000
> 547670.87500000000	4829451.50000000000
> 545242.81250000000	4829436.50000000000
> 544426.81250000000	4829417.50000000000
> 581522.93750000000	4828937.50000000000
> 579898.93750000000	4828926.50000000000
> 578283.93750000000	4828894.50000000000
> 576673.93750000000	4828887.50000000000
> 575063.93750000000	4828860.50000000000
> 573478.93750000000	4828856.50000000000
> 571872.93750000000	4828837.50000000000
> 570274.93750000000	4828820.50000000000
> 568659.93750000000	4828817.50000000000
> 567048.93750000000	4828792.50000000000
> 565432.87500000000	4828770.50000000000
> 563809.87500000000	4828762.50000000000
> 562218.87500000000	4828728.50000000000
> 560620.87500000000	4828723.50000000000
> 559008.87500000000	4828715.50000000000
> 557405.87500000000	4828710.50000000000
> 555793.87500000000	4828708.50000000000
> 554113.87500000000	4828700.50000000000
> 552504.87500000000	4828692.50000000000
> 550893.87500000000	4828679.50000000000
> 549288.87500000000	4828664.50000000000
> 546057.81250000000	4828647.50000000000
> 547675.81250000000	4828646.50000000000
> 581534.93750000000	4828137.50000000000
> 580723.93750000000	4828131.50000000000
> 579912.93750000000	4828125.50000000000
> 579104.93750000000	4828113.50000000000
> 578296.93750000000	4828101.50000000000
> 577491.93750000000	4828094.50000000000
> 576687.93750000000	4828087.50000000000
> 575882.93750000000	4828075.50000000000
> 575077.93750000000	4828064.50000000000
> 574284.93750000000	4828062.50000000000
> 573492.93750000000	4828060.50000000000
> 572690.93750000000	4828044.50000000000
> 571889.93750000000	4828029.50000000000
> 571087.93750000000	4828020.50000000000
> 568667.87500000000	4828016.50000000000
> 569476.87500000000	4828013.50000000000
> 570285.87500000000	4828011.50000000000
> 567864.87500000000	4828002.50000000000
> 567061.87500000000	4827988.50000000000
> 566254.87500000000	4827979.50000000000
> 565447.87500000000	4827970.50000000000
> 564631.87500000000	4827965.50000000000
> 563815.87500000000	4827961.50000000000
> 563019.87500000000	4827945.50000000000
> 562224.87500000000	4827929.50000000000
> 561427.87500000000	4827924.50000000000
> 560630.87500000000	4827919.50000000000
> 559821.87500000000	4827917.50000000000
> 559013.87500000000	4827916.50000000000
> 558210.87500000000	4827911.50000000000
> 557407.87500000000	4827906.50000000000
> 555790.87500000000	4827905.50000000000
> 556598.87500000000	4827905.50000000000
> 554953.87500000000	4827901.50000000000
> 554116.87500000000	4827897.50000000000
> 553314.87500000000	4827892.50000000000
> 552513.87500000000	4827888.50000000000
> 551706.87500000000	4827880.50000000000
> 550899.87500000000	4827872.50000000000
> 550096.81250000000	4827864.50000000000
> 549293.81250000000	4827857.50000000000
> 548486.81250000000	4827849.50000000000
> 547680.81250000000	4827842.50000000000
> 546868.81250000000	4827840.50000000000
> 546056.81250000000	4827839.50000000000
> 545247.81250000000	4827823.50000000000
> 544439.81250000000	4827808.50000000000
> 581547.93750000000	4827342.50000000000
> 579928.93750000000	4827326.50000000000
> 578311.93750000000	4827303.50000000000
> 576700.93750000000	4827288.50000000000
> 575097.87500000000	4827262.50000000000
> 573503.87500000000	4827255.50000000000
> 571901.87500000000	4827229.50000000000
> 570293.87500000000	4827212.50000000000
> 568683.87500000000	4827208.50000000000
> 567078.87500000000	4827184.50000000000
> 565470.87500000000	4827164.50000000000
> 563834.87500000000	4827155.50000000000
> 562230.87500000000	4827134.50000000000
> 560626.87500000000	4827118.50000000000
> 559019.87500000000	4827109.50000000000
> 557407.87500000000	4827100.50000000000
> 555792.87500000000	4827098.50000000000
> 554127.87500000000	4827090.50000000000
> 552523.81250000000	4827076.50000000000
> 550906.81250000000	4827065.50000000000
> 549302.81250000000	4827052.50000000000
> 547691.81250000000	4827037.50000000000
> 546074.81250000000	4827034.50000000000
> 581561.93750000000	4826547.50000000000
> 580752.87500000000	4826537.50000000000
> 579944.87500000000	4826527.50000000000
> 579135.87500000000	4826516.50000000000
> 578327.87500000000	4826506.50000000000
> 577520.87500000000	4826498.50000000000
> 576714.87500000000	4826490.50000000000
> 575915.87500000000	4826475.50000000000
> 575117.87500000000	4826460.50000000000
> 574316.87500000000	4826455.50000000000
> 573515.87500000000	4826450.50000000000
> 572714.87500000000	4826439.50000000000
> 571913.87500000000	4826429.50000000000
> 571107.87500000000	4826421.50000000000
> 570301.87500000000	4826413.50000000000
> 569500.87500000000	4826406.50000000000
> 568699.87500000000	4826400.50000000000
> 567897.87500000000	4826390.50000000000
> 567096.87500000000	4826381.50000000000
> 566295.87500000000	4826370.50000000000
> 565494.87500000000	4826359.50000000000
> 564673.87500000000	4826354.50000000000
> 563853.87500000000	4826350.50000000000
> 563044.87500000000	4826344.50000000000
> 562236.87500000000	4826339.50000000000
> 561429.87500000000	4826328.50000000000
> 560623.87500000000	4826317.50000000000
> 559824.87500000000	4826310.50000000000
> 559026.87500000000	4826303.50000000000
> 558217.87500000000	4826299.50000000000
> 557408.87500000000	4826295.50000000000
> 556601.87500000000	4826293.50000000000
> 555794.87500000000	4826291.50000000000
> 554966.81250000000	4826287.50000000000
> 554138.81250000000	4826284.50000000000
> 553335.81250000000	4826274.50000000000
> 552533.81250000000	4826265.50000000000
> 551723.81250000000	4826261.50000000000
> 550913.81250000000	4826258.50000000000
> 550112.81250000000	4826253.50000000000
> 549311.81250000000	4826248.50000000000
> 548506.81250000000	4826240.50000000000
> 547702.81250000000	4826232.50000000000
> 546897.81250000000	4826230.50000000000
> 546092.81250000000	4826229.50000000000
> 545271.81250000000	4826211.50000000000
> 544451.81250000000	4826193.50000000000
> 581563.87500000000	4825740.50000000000
> 579949.87500000000	4825722.50000000000
> 578340.87500000000	4825707.50000000000
> 576725.87500000000	4825683.50000000000
> 575118.87500000000	4825665.50000000000
> 573522.87500000000	4825647.50000000000
> 571918.87500000000	4825633.50000000000
> 570310.87500000000	4825621.50000000000
> 568704.87500000000	4825603.50000000000
> 567101.87500000000	4825596.50000000000
> 565496.87500000000	4825581.50000000000
> 563853.87500000000	4825546.50000000000
> 562244.87500000000	4825530.50000000000
> 560635.87500000000	4825522.50000000000
> 559024.87500000000	4825504.50000000000
> 557409.81250000000	4825499.50000000000
> 555792.81250000000	4825488.50000000000
> 554144.81250000000	4825480.50000000000
> 552537.81250000000	4825455.50000000000
> 549324.81250000000	4825451.50000000000
> 546093.81250000000	4825424.50000000000
> 547705.81250000000	4825420.50000000000
> 581566.87500000000	4824933.50000000000
> 580760.87500000000	4824925.50000000000
> 579954.87500000000	4824918.50000000000
> 579153.87500000000	4824913.50000000000
> 578353.87500000000	4824909.50000000000
> 577544.87500000000	4824892.50000000000
> 576736.87500000000	4824876.50000000000
> 575928.87500000000	4824873.50000000000
> 575120.87500000000	4824870.50000000000
> 574325.87500000000	4824857.50000000000
> 573530.87500000000	4824844.50000000000
> 572726.87500000000	4824840.50000000000
> 571923.87500000000	4824837.50000000000
> 571121.87500000000	4824833.50000000000
> 570319.87500000000	4824829.50000000000
> 569514.87500000000	4824818.50000000000
> 567106.87500000000	4824812.50000000000
> 567907.87500000000	4824809.50000000000
> 566302.87500000000	4824808.50000000000
> 568709.87500000000	4824807.50000000000
> 565499.87500000000	4824804.50000000000
> 564676.87500000000	4824773.50000000000
> 563854.87500000000	4824743.50000000000
> 563053.87500000000	4824732.50000000000
> 560648.87500000000	4824727.50000000000
> 561450.87500000000	4824724.50000000000
> 562252.87500000000	4824721.50000000000
> 559835.81250000000	4824716.50000000000
> 559023.81250000000	4824705.50000000000
> 557410.81250000000	4824704.50000000000
> 558216.81250000000	4824704.50000000000
> 556600.81250000000	4824694.50000000000
> 555791.81250000000	4824685.50000000000
> 554971.81250000000	4824681.50000000000
> 554151.81250000000	4824677.50000000000
> 553346.81250000000	4824661.50000000000
> 549337.81250000000	4824655.50000000000
> 552541.81250000000	4824645.50000000000
> 548522.81250000000	4824632.50000000000
> 546095.81250000000	4824619.50000000000
> 546901.81250000000	4824614.50000000000
> 547708.81250000000	4824609.50000000000
> 581576.87500000000	4824131.50000000000
> 579957.87500000000	4824114.50000000000
> 578352.87500000000	4824104.50000000000
> 576744.87500000000	4824073.50000000000
> 575129.87500000000	4824064.50000000000
> 573538.87500000000	4824041.50000000000
> 571927.87500000000	4824036.50000000000
> 570323.87500000000	4824023.50000000000
> 567100.87500000000	4824009.50000000000
> 568715.87500000000	4824005.50000000000
> 565496.81250000000	4823998.50000000000
> 563861.81250000000	4823935.50000000000
> 562256.81250000000	4823919.50000000000
> 560644.81250000000	4823918.50000000000
> 557409.81250000000	4823902.50000000000
> 559026.81250000000	4823899.50000000000
> 581587.87500000000	4823329.50000000000
> 580774.87500000000	4823319.50000000000
> 579961.87500000000	4823310.50000000000
> 579156.87500000000	4823305.50000000000
> 578351.87500000000	4823300.50000000000
> 577552.87500000000	4823285.50000000000
> 576753.87500000000	4823271.50000000000
> 575945.87500000000	4823265.50000000000
> 575138.87500000000	4823259.50000000000
> 574342.87500000000	4823249.50000000000
> 573546.81250000000	4823239.50000000000
> 572738.81250000000	4823237.50000000000
> 571931.81250000000	4823235.50000000000
> 571129.81250000000	4823226.50000000000
> 570328.81250000000	4823217.50000000000
> 569525.81250000000	4823210.50000000000
> 567095.81250000000	4823206.50000000000
> 567908.81250000000	4823204.50000000000
> 568722.81250000000	4823203.50000000000
> 566294.81250000000	4823199.50000000000
> 565494.81250000000	4823193.50000000000
> 564681.81250000000	4823160.50000000000
> 563869.81250000000	4823128.50000000000
> 563065.81250000000	4823122.50000000000
> 562261.81250000000	4823117.50000000000
> 561451.81250000000	4823113.50000000000
> 560641.81250000000	4823110.50000000000
> 559835.81250000000	4823102.50000000000
> 557408.81250000000	4823100.50000000000
> 558218.81250000000	4823097.50000000000
> 559029.81250000000	4823094.50000000000
> 581599.87500000000	4822531.50000000000
> 579966.81250000000	4822508.50000000000
> 578357.81250000000	4822497.50000000000
> 576757.81250000000	4822472.50000000000
> 575151.81250000000	4822458.50000000000
> 573555.81250000000	4822437.50000000000
> 571940.81250000000	4822435.50000000000
> 570333.81250000000	4822405.50000000000
> 567103.81250000000	4822399.50000000000
> 568721.81250000000	4822397.50000000000
> 565494.81250000000	4822384.50000000000
> 563871.81250000000	4822326.50000000000
> 562260.81250000000	4822314.50000000000
> 560641.81250000000	4822307.50000000000
> 557409.81250000000	4822292.50000000000
> 559029.81250000000	4822291.50000000000
> 581612.81250000000	4821734.50000000000
> 580792.81250000000	4821720.50000000000
> 579972.81250000000	4821707.50000000000
> 579167.81250000000	4821701.50000000000
> 578363.81250000000	4821695.50000000000
> 577562.81250000000	4821684.50000000000
> 576761.81250000000	4821674.50000000000
> 575962.81250000000	4821666.50000000000
> 575164.81250000000	4821658.50000000000
> 574364.81250000000	4821646.50000000000
> 571949.81250000000	4821636.50000000000
> 572756.81250000000	4821635.50000000000
> 573564.81250000000	4821635.50000000000
> 571143.81250000000	4821614.50000000000
> 567111.81250000000	4821593.50000000000
> 570338.81250000000	4821593.50000000000
> 567916.81250000000	4821592.50000000000
> 569529.81250000000	4821592.50000000000
> 568721.81250000000	4821591.50000000000
> 566303.81250000000	4821584.50000000000
> 565495.81250000000	4821575.50000000000
> 564684.81250000000	4821549.50000000000
> 563874.81250000000	4821524.50000000000
> 563067.81250000000	4821518.50000000000
> 562260.81250000000	4821512.50000000000
> 561451.81250000000	4821508.50000000000
> 560642.81250000000	4821505.50000000000
> 559835.81250000000	4821497.50000000000
> 559029.81250000000	4821489.50000000000
> 558219.81250000000	4821487.50000000000
> 557410.81250000000	4821485.50000000000
> 581628.81250000000	4820934.50000000000
> 579995.81250000000	4820910.50000000000
> 578376.81250000000	4820896.50000000000
> 576775.81250000000	4820870.50000000000
> 575176.81250000000	4820855.50000000000
> 573573.81250000000	4820831.50000000000
> 571955.81250000000	4820830.50000000000
> 570349.81250000000	4820789.50000000000
> 568733.81250000000	4820786.50000000000
> 567126.81250000000	4820784.50000000000
> 565506.81250000000	4820769.50000000000
> 563880.81250000000	4820718.50000000000
> 562265.81250000000	4820706.50000000000
> 560652.81250000000	4820695.50000000000
> 559031.81250000000	4820684.50000000000
> 557419.81250000000	4820678.50000000000
> 581644.81250000000	4820135.50000000000
> 580831.81250000000	4820124.50000000000
> 580018.81250000000	4820114.50000000000
> 579204.81250000000	4820105.50000000000
> 578390.81250000000	4820097.50000000000
> 577590.81250000000	4820082.50000000000
> 576790.81250000000	4820067.50000000000
> 575989.81250000000	4820059.50000000000
> 575188.81250000000	4820052.50000000000
> 574385.81250000000	4820040.50000000000
> 573583.81250000000	4820028.50000000000
> 572772.81250000000	4820026.50000000000
> 571962.81250000000	4820024.50000000000
> 571161.81250000000	4820004.50000000000
> 570360.81250000000	4819985.50000000000
> 569552.81250000000	4819983.50000000000
> 568745.81250000000	4819982.50000000000
> 567943.81250000000	4819979.50000000000
> 567142.81250000000	4819976.50000000000
> 566330.81250000000	4819970.50000000000
> 565518.81250000000	4819964.50000000000
> 564702.81250000000	4819938.50000000000
> 563887.81250000000	4819912.50000000000
> 563078.81250000000	4819906.50000000000
> 562270.81250000000	4819901.50000000000
> 561466.81250000000	4819893.50000000000
> 560662.81250000000	4819885.50000000000
> 559848.81250000000	4819882.50000000000
> 559034.75000000000	4819879.50000000000
> 558231.75000000000	4819875.50000000000
> 557428.75000000000	4819871.50000000000
> 556614.75000000000	4819859.50000000000
> 555801.75000000000	4819847.50000000000
> 581652.81250000000	4819334.50000000000
> 580028.81250000000	4819304.50000000000
> 578404.81250000000	4819290.50000000000
> 576798.81250000000	4819265.50000000000
> 575195.81250000000	4819242.50000000000
> 573587.81250000000	4819219.50000000000
> 571973.81250000000	4819218.50000000000
> 570368.81250000000	4819184.50000000000
> 568756.75000000000	4819178.50000000000
> 567145.75000000000	4819172.50000000000
> 565527.75000000000	4819153.50000000000
> 563890.75000000000	4819110.50000000000
> 562271.75000000000	4819099.50000000000
> 560666.75000000000	4819082.50000000000
> 559042.75000000000	4819075.50000000000
> 557432.75000000000	4819066.50000000000
> 555813.75000000000	4819045.50000000000
> 581660.81250000000	4818533.50000000000
> 580849.75000000000	4818514.50000000000
> 580039.75000000000	4818495.50000000000
> 579229.75000000000	4818489.50000000000
> 578419.75000000000	4818484.50000000000
> 577613.75000000000	4818474.50000000000
> 576807.75000000000	4818464.50000000000
> 576005.75000000000	4818448.50000000000
> 575203.75000000000	4818432.50000000000
> 574397.75000000000	4818421.50000000000
> 571985.75000000000	4818413.50000000000
> 572788.75000000000	4818412.50000000000
> 573592.75000000000	4818411.50000000000
> 571180.75000000000	4818398.50000000000
> 570376.75000000000	4818383.50000000000
> 569572.75000000000	4818378.50000000000
> 568768.75000000000	4818374.50000000000
> 567958.75000000000	4818371.50000000000
> 567149.75000000000	4818369.50000000000
> 566343.75000000000	4818356.50000000000
> 565537.75000000000	4818343.50000000000
> 564715.75000000000	4818326.50000000000
> 563893.75000000000	4818309.50000000000
> 563083.75000000000	4818303.50000000000
> 562273.75000000000	4818298.50000000000
> 561471.75000000000	4818289.50000000000
> 560670.75000000000	4818280.50000000000
> 559860.75000000000	4818276.50000000000
> 559050.75000000000	4818272.50000000000
> 558243.75000000000	4818267.50000000000
> 557437.75000000000	4818262.50000000000
> 556631.75000000000	4818253.50000000000
> 555825.75000000000	4818244.50000000000
> 581674.75000000000	4817720.50000000000
> 580064.75000000000	4817689.50000000000
> 578436.75000000000	4817674.50000000000
> 576822.75000000000	4817660.50000000000
> 575215.75000000000	4817639.50000000000
> 573597.75000000000	4817611.50000000000
> 571988.75000000000	4817608.50000000000
> 570382.75000000000	4817583.50000000000
> 568764.75000000000	4817572.50000000000
> 567151.75000000000	4817561.50000000000
> 565541.75000000000	4817533.50000000000
> 563902.75000000000	4817508.50000000000
> 562285.75000000000	4817496.50000000000
> 560678.75000000000	4817479.50000000000
> 559056.75000000000	4817467.50000000000
> 557445.75000000000	4817453.50000000000
> 555831.75000000000	4817436.50000000000
> 581689.75000000000	4816907.50000000000
> 580089.75000000000	4816884.50000000000
> 579271.75000000000	4816874.50000000000
> 578453.75000000000	4816864.50000000000
> 577645.75000000000	4816860.50000000000
> 576838.75000000000	4816856.50000000000
> 575228.75000000000	4816846.50000000000
> 570389.75000000000	4816784.50000000000
> 565545.75000000000	4816724.50000000000
> 563911.75000000000	4816707.50000000000
> 562297.75000000000	4816695.50000000000
> 560687.75000000000	4816678.50000000000
> 559875.75000000000	4816670.50000000000
> 559063.75000000000	4816662.50000000000
> 557453.75000000000	4816645.50000000000
> 556645.75000000000	4816637.50000000000
> 555838.75000000000	4816629.50000000000
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 71
Date: Wed, 28 Jan 2009 12:03:50 -0800 (PST)
From: pfc_ivan <pfc_ivan at hotmail.com>
Subject: [R]  Newbie Question About Histograms
To: r-help at r-project.org
Message-ID: <21713626.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii


Hello everyone. Just have a question , cant figure out how to make this
histogram. 

I have this table, that i stored in a variable name new.data2. Table looks
like this

Year GeoArea SmpNo Month Gear Maturity Length Age YearC
1989       1   362    10   22        1    225   1  1988
1991       1   267    10   10        1    191   1  1990
1991       1   267    10   10        1    202   1  1990
1992       1   305    10    8        1    162   1  1991
1992       1   305    10    8        1    165   1  1991
1992       1   305    10    8        1    166   1  1991
1992       1   305    10    8        1    167   1  1991
1992       1   305    10    8        1    167   1  1991
1992       1   305    10    8        1    169   1  1991
1992       1   305    10    8        1    170   1  1991

Now I need to make a histogram of Length vs YearC. I would guess that Length
would be on the Y-axis and YearC variable would be on X-axis. I have tried
many different combinations with command 'hist' but im always getting error
" 'x' must be numeric " ... I think im getting that error because of the
header which is not numeric. Any help would be appreciated. Thanks guys. 

Ivan.
-- 
View this message in context: http://www.nabble.com/Newbie-Question-About-Histograms-tp21713626p21713626.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 72
Date: Wed, 28 Jan 2009 12:04:18 -0800 (PST)
From: Sea Captain 1779 <dbowen at measinc.com>
Subject: [R]  Help with normal distribution in random samples...
To: r-help at r-project.org
Message-ID: <21713636.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii


Hi!!!

First time 'R' user looking for a little assistance.  Here is what I have so
far:

practice1 = matrix ((runif(5000, min =0, max = 12)), 100)

which is creating 50 samples, for 100 cases, distributed between 0-12.  What
I would like is to be able to set the mean and SD so that the data is
normally distributed around lets say 7.  Any help I can get with achieving
[[elided Yahoo spam]]

-Dan
-- 
View this message in context: http://www.nabble.com/Help-with-normal-distribution-in-random-samples...-tp21713636p21713636.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 73
Date: Wed, 28 Jan 2009 12:37:57 -0800 (PST)
From: Alice Lin <alice.ly at gmail.com>
Subject: [R]  Text data
To: r-help at r-project.org
Message-ID: <21714334.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii


i have a data column of text entries:
26M_AN_C.bmp
22M_AN_C.bmp
20M_HA_O.bmp
20M_AN_C.bmp
26M_HA_O.bmp
22M_HA_O.bmp
31M_AN_C.bmp
38M_HA_O.bmp
.
.
.
.


And I would like to sort by the middle tag: AN, HA, etc.
Is there a way to parse text data in R? 

In excel, I would have used the "left" and "right" function to cut out just
the middle two letters out and put into another column to sort by. 

Thanks!

-- 
View this message in context: http://www.nabble.com/Text-data-tp21714334p21714334.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 74
Date: Thu, 29 Jan 2009 10:10:38 +1300
From: "Peter Alspach" <PAlspach at hortresearch.co.nz>
Subject: Re: [R] Newbie Question About Histograms
To: "pfc_ivan" <pfc_ivan at hotmail.com>, <r-help at r-project.org>
Message-ID:
	<EC0F8FF776F3F74E9C63CE16641C9628037A486D at AKLEXB02.hort.net.nz>
Content-Type: text/plain;	charset="us-ascii"

Kia ora Ivan

I think you might want a barplot.

?hist

under 'See Also:' states:

     Typical plots with vertical bars are _not_ histograms.  Consider
     'barplot' or 'plot(*, type = "h")' for such bar plots.

[The online help in R is good.]

HTH ....

Peter Alspach

> -----Original Message-----
> From: r-help-bounces at r-project.org 
> [mailto:r-help-bounces at r-project.org] On Behalf Of pfc_ivan
> Sent: Thursday, 29 January 2009 9:04 a.m.
> To: r-help at r-project.org
> Subject: [R] Newbie Question About Histograms
> 
> 
> Hello everyone. Just have a question , cant figure out how to 
> make this histogram. 
> 
> I have this table, that i stored in a variable name 
> new.data2. Table looks like this
> 
> Year GeoArea SmpNo Month Gear Maturity Length Age YearC
> 1989       1   362    10   22        1    225   1  1988
> 1991       1   267    10   10        1    191   1  1990
> 1991       1   267    10   10        1    202   1  1990
> 1992       1   305    10    8        1    162   1  1991
> 1992       1   305    10    8        1    165   1  1991
> 1992       1   305    10    8        1    166   1  1991
> 1992       1   305    10    8        1    167   1  1991
> 1992       1   305    10    8        1    167   1  1991
> 1992       1   305    10    8        1    169   1  1991
> 1992       1   305    10    8        1    170   1  1991
> 
> Now I need to make a histogram of Length vs YearC. I would 
> guess that Length would be on the Y-axis and YearC variable 
> would be on X-axis. I have tried many different combinations 
> with command 'hist' but im always getting error " 'x' must be 
> numeric " ... I think im getting that error because of the 
> header which is not numeric. Any help would be appreciated. 
> Thanks guys. 
> 
> Ivan.
> --
> View this message in context: 
> http://www.nabble.com/Newbie-Question-About-Histograms-tp21713
> 626p21713626.html
> Sent from the R help mailing list archive at Nabble.com.
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
> 

The contents of this e-mail are confidential and may be subject to legal privilege.
 If you are not the intended recipient you must not use, disseminate, distribute or
 reproduce all or any part of this e-mail or attachments.  If you have received this
 e-mail in error, please notify the sender and delete all material pertaining to this
 e-mail.  Any opinion or views expressed in this e-mail are those of the individual
 sender and may not represent those of The New Zealand Institute for Plant and
 Food Research Limited.



------------------------------

Message: 75
Date: Wed, 28 Jan 2009 13:11:57 -0800 (PST)

Subject: [R] Changing histogram stack in qplot
To: R-help at r-project.org
Message-ID: <186567.94177.qm at web56006.mail.re3.yahoo.com>
Content-Type: text/plain

I've been using qplot pretty successfully to generate stacked histograms.  However, it appears that I need to tweak the colors a little.  

I've got three temperature variables (characters not numeric) and I need to change from the default qplot colors to the following:
Low = Blue
Middle = black
High = Red

Here is pseudo code of what I have currently:qplot(Run, data = TestData, breaks = hist_breaks, ,  
          fill = TestData$Temperature, 
          main = short_title) +
          scale_x_continuous("Run, Radians") + scale_y_continuous("Frequency") + 
          scale_fill_discrete("Temperature")

Thanks for any advice and insights.




      
	[[alternative HTML version deleted]]



------------------------------

Message: 76
Date: Wed, 28 Jan 2009 16:14:48 -0500
From: "Antonio, Fabio Di Narzo" <antonio.fabio at gmail.com>
Subject: Re: [R] Neighborhood distance calculator
To: roger koenker <rkoenker at uiuc.edu>
Cc: r-help <r-help at r-project.org>, Kumudan <cybermails at gmail.com>
Message-ID:
	<b0808fdc0901281314j20f9f995hd3b68d345a961cc at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

The tseriesChaos package has an internal function "find_knearests"
which deals with a similar problem using a box-assisted search
strategy to alleviate time complexity explosion.
However, you will have to dig into the C sources, as these have no man pages.

HTH,
f.

2009/1/28 roger koenker <rkoenker at uiuc.edu>:
> If you are willing to dig into the adjacency information returned from
> tri.mesh in the tripack package, this could be done quite efficiently.
>
> url:    www.econ.uiuc.edu/~roger            Roger Koenker
> email    rkoenker at uiuc.edu            Department of Economics
> vox:     217-333-4558                University of Illinois
> fax:       217-244-6678                Champaign, IL 61820
>
> On Jan 28, 2009, at 2:33 PM, Kumudan wrote:
>
>> Hi all,
>>
>> I am new to R, hence this question. I have a set of points with X and
>> Y coordinates. I would like to build an R code to calculate the
>> distances of points within a specified neighborhood (circular range)
>> for each point. I would like the code to be a function, so that I can
>> call the function, specifying parameters (data file, distance), from
>> another piece of code. Also, I would like the output to be as:
>>
>> output = list(array)
>> .........code...........
>> ........new code.....
>> return(output)
>>
>> Something like this--
>> [[1496]]
>> [1] 1490 1491 1492 1493 1494 1495
>>
>> The most important thing, however, is that I want to run the code for
>> 100,000+ points. The current code I have calculates the neighborhood
>> distances for all the points with ever point, and then selects only
>> those points within the specified distance parameter. This code
>> crashes when I have over 40,000 points. Therefore, I need to figure
>> out a way to preclude the step where it calculates all of the paired
>> distances, and rather only those points within the specified distance
>> parameter. Please, see below for the existing code, and a sample data.
>> Thanks a lot for your time and effort.
>>
>> Best,
>> Kumudan
>>
>> Kumudan Grubh
>> EEB Graduate student
>> Iowa State University
>>
>>
>> -------------------------------------------------------------------------------------------------------------------------------------------------------
>> #--Code--
>> #transform coordinates in kilometers, and redefine origin
>> newx=(XCOORD-min(XCOORD))/1000
>> newy=(YCOORD-min(YCOORD))/1000
>> plot(newx,newy,pch=20,xlab="X coordinate (km)",ylab="Y coordinate (km)")
>>
>> #set of new locations to be used from here on
>> tr.locs=cbind(newx,newy)
>>
>> #the functions necessary for estimation are written in an external
>> program. All you need to do is to run this program one. To do this,
>> you could "source" this code
>> source("D:/...../Functions_distance.R")
>>
>> #define distance-based neighborhood
>> nb.tr=dist.neighbors(tr.locs,2)
>>
>> ----------------------------------------------------------------------------------------------------------------------------------------------------------
>> #---Function_distance.R   <- Function to calculate distance of pairs
>> of neighbors
>> #start by defining neighbors
>> library(spatstat)#need this to compute distances between all points in a
>> data
>>
>> dist.neighbors=function(data,distance)
>> #distance is set by user
>> {
>> #data has the x and y on the first two columns. Could have more than
>> two columns, or exactly two columns, it doesn't matter.
>> #produces a "list" object with a vector of the neighbors for each location
>> #distance defines the range within which we define neighbors
>> nd=length(data[,1])
>> nbmat=list(array)
>> dist=pairdist(data[,1:2])
>>  for(i in 1:nd){
>>  nbmat[[i]]=0
>>        for(j in 1:nd) if((dist[i,j]<distance)&(i!=j))
>> nbmat[[i]]=c(nbmat[[i]],j)
>>        nbmat[[i]]=nbmat[[i]][nbmat[[i]]!=0]}
>> return(nbmat)
>> }
>>
>> ------------------------------------------------------------------------------------------------------------------------------------
>>
>> Data
>>
>> -----------------------------------------------------------------------------------
>> XCOORD  YCOORD
>> 544312.87500000000      4851169.00000000000
>> 542705.87500000000      4851165.00000000000
>> 541068.87500000000      4851155.00000000000
>> 537861.81250000000      4851123.00000000000
>> 536246.81250000000      4851118.00000000000
>> 539476.87500000000      4851116.00000000000
>> 534612.81250000000      4851113.00000000000
>> 533004.75000000000      4851095.00000000000
>> 542714.87500000000      4850363.00000000000
>> 543516.87500000000      4850360.00000000000
>> 544319.93750000000      4850358.00000000000
>> 541883.87500000000      4850353.00000000000
>> 541053.87500000000      4850342.50000000000
>> 540268.87500000000      4850326.50000000000
>> 537866.81250000000      4850313.50000000000
>> 538674.87500000000      4850311.50000000000
>> 539483.87500000000      4850310.50000000000
>> 537060.81250000000      4850310.00000000000
>> 536255.81250000000      4850307.00000000000
>> 535434.81250000000      4850306.00000000000
>> 534614.81250000000      4850305.00000000000
>> 533809.81250000000      4850297.00000000000
>> 533004.81250000000      4850289.00000000000
>> 542716.87500000000      4849553.50000000000
>> 541074.87500000000      4849537.50000000000
>> 539486.87500000000      4849508.50000000000
>> 537867.87500000000      4849507.50000000000
>> 536260.81250000000      4849503.50000000000
>> 534622.81250000000      4849498.50000000000
>> 533009.81250000000      4849483.00000000000
>> 542718.93750000000      4848744.50000000000
>> 543524.93750000000      4848743.50000000000
>> 544331.93750000000      4848743.50000000000
>> 541906.87500000000      4848738.50000000000
>> 541095.87500000000      4848733.50000000000
>> 540292.87500000000      4848720.50000000000
>> 539489.87500000000      4848707.50000000000
>> 538679.87500000000      4848704.50000000000
>> 537869.87500000000      4848702.50000000000
>> 536265.81250000000      4848701.50000000000
>> 537067.87500000000      4848701.50000000000
>> 535447.81250000000      4848697.50000000000
>> 534630.81250000000      4848693.50000000000
>> 533822.81250000000      4848684.50000000000
>> 533014.81250000000      4848676.50000000000
>> 532211.81250000000      4848663.50000000000
>> 531409.81250000000      4848650.50000000000
>> 542724.93750000000      4847938.50000000000
>> 541102.87500000000      4847926.50000000000
>> 539492.87500000000      4847906.50000000000
>> 537874.87500000000      4847896.50000000000
>> 536267.87500000000      4847894.50000000000
>> 534634.81250000000      4847882.50000000000
>> 533016.81250000000      4847869.50000000000
>> 531414.81250000000      4847840.50000000000
>> 544345.93750000000      4847135.50000000000
>> 543538.93750000000      4847133.50000000000
>> 542731.93750000000      4847132.50000000000
>> 541920.93750000000      4847125.50000000000
>> 541109.93750000000      4847119.50000000000
>> 540302.87500000000      4847112.50000000000
>> 539496.87500000000      4847105.50000000000
>> 538688.87500000000      4847097.50000000000
>> 537880.87500000000      4847090.50000000000
>> 537075.87500000000      4847088.50000000000
>> 536270.87500000000      4847087.50000000000
>> 535454.87500000000      4847079.50000000000
>> 534639.87500000000      4847071.50000000000
>> 533829.81250000000      4847067.50000000000
>> 533019.81250000000      4847063.50000000000
>> 532219.81250000000      4847047.50000000000
>> 531420.81250000000      4847031.50000000000
>> 544350.93750000000      4846325.50000000000
>> 542735.93750000000      4846319.50000000000
>> 541112.93750000000      4846307.50000000000
>> 539497.87500000000      4846294.50000000000
>> 537882.87500000000      4846282.50000000000
>> 536267.87500000000      4846277.50000000000
>> 534638.87500000000      4846263.50000000000
>> 533022.81250000000      4846253.50000000000
>> 531424.81250000000      4846221.50000000000
>> 544356.93750000000      4845516.50000000000
>> 543547.93750000000      4845511.50000000000
>> 542739.93750000000      4845507.50000000000
>> 541927.93750000000      4845501.50000000000
>> 541115.93750000000      4845495.50000000000
>> 540307.93750000000      4845489.50000000000
>> 539499.93750000000      4845483.50000000000
>> 538692.93750000000      4845478.50000000000
>> 537885.87500000000      4845474.50000000000
>> 537075.87500000000      4845471.50000000000
>> 536265.87500000000      4845468.50000000000
>> 535451.87500000000      4845462.50000000000
>> 534638.87500000000      4845456.50000000000
>> 533831.87500000000      4845449.50000000000
>> 533025.87500000000      4845443.50000000000
>> 532226.81250000000      4845427.50000000000
>> 531428.81250000000      4845412.50000000000
>> 530621.81250000000      4845407.50000000000
>> 529814.81250000000      4845402.50000000000
>> 544356.93750000000      4844711.50000000000
>> 542738.93750000000      4844704.50000000000
>> 541123.93750000000      4844689.50000000000
>> 539506.93750000000      4844675.50000000000
>> 537893.93750000000      4844664.50000000000
>> 536284.87500000000      4844654.50000000000
>> 534641.87500000000      4844646.50000000000
>> 533027.87500000000      4844634.50000000000
>> 531423.87500000000      4844606.50000000000
>> 529812.81250000000      4844600.50000000000
>> 544357.93750000000      4843907.50000000000
>> 543547.93750000000      4843904.50000000000
>> 542737.93750000000      4843901.50000000000
>> 541934.93750000000      4843892.50000000000
>> 541132.93750000000      4843883.50000000000
>> 540323.93750000000      4843875.50000000000
>> 539514.93750000000      4843868.50000000000
>> 538708.93750000000      4843861.50000000000
>> 537902.93750000000      4843854.50000000000
>> 537102.87500000000      4843847.50000000000
>> 536303.87500000000      4843841.50000000000
>> 535473.87500000000      4843838.50000000000
>> 534644.87500000000      4843836.50000000000
>> 533837.87500000000      4843830.50000000000
>> 533030.87500000000      4843825.50000000000
>> 532224.87500000000      4843813.50000000000
>> 531419.87500000000      4843801.50000000000
>> 530615.81250000000      4843800.50000000000
>> 529811.81250000000      4843799.50000000000
>> 544356.93750000000      4843106.50000000000
>> 542737.93750000000      4843094.50000000000
>> 541133.93750000000      4843075.50000000000
>> 539515.93750000000      4843065.50000000000
>> 537906.87500000000      4843047.50000000000
>> 536303.87500000000      4843031.50000000000
>> 534654.87500000000      4843025.50000000000
>> 533033.87500000000      4843015.50000000000
>> 531419.81250000000      4842993.50000000000
>> 529808.81250000000      4842989.50000000000
>> 544356.93750000000      4842305.50000000000
>> 543547.93750000000      4842296.50000000000
>> 542738.93750000000      4842287.50000000000
>> 541936.93750000000      4842277.50000000000
>> 541134.93750000000      4842268.50000000000
>> 540325.93750000000      4842265.50000000000
>> 539516.93750000000      4842262.50000000000
>> 538713.87500000000      4842251.50000000000
>> 537911.87500000000      4842240.50000000000
>> 537107.87500000000      4842231.50000000000
>> 536304.87500000000      4842222.50000000000
>> 535484.87500000000      4842218.50000000000
>> 534664.87500000000      4842214.50000000000
>> 533850.87500000000      4842210.50000000000
>> 533037.87500000000      4842206.50000000000
>> 532228.81250000000      4842195.50000000000
>> 531419.81250000000      4842185.50000000000
>> 530612.81250000000      4842182.50000000000
>> 529806.81250000000      4842179.50000000000
>> 544356.93750000000      4841500.50000000000
>> 542738.93750000000      4841483.50000000000
>> 541132.93750000000      4841463.50000000000
>> 539520.93750000000      4841454.50000000000
>> 537913.87500000000      4841433.50000000000
>> 536304.87500000000      4841418.50000000000
>> 534667.87500000000      4841408.50000000000
>> 533040.81250000000      4841393.50000000000
>> 531425.81250000000      4841373.50000000000
>> 529811.81250000000      4841367.50000000000
>> 544356.93750000000      4840695.50000000000
>> 543547.93750000000      4840687.50000000000
>> 542739.93750000000      4840680.50000000000
>> 541934.93750000000      4840669.50000000000
>> 541130.93750000000      4840658.50000000000
>> 540327.93750000000      4840652.50000000000
>> 539525.87500000000      4840647.50000000000
>> 538720.87500000000      4840637.50000000000
>> 537915.87500000000      4840627.50000000000
>> 537109.87500000000      4840621.50000000000
>> 536304.87500000000      4840615.50000000000
>> 535487.87500000000      4840609.50000000000
>> 534670.87500000000      4840603.50000000000
>> 533856.81250000000      4840591.50000000000
>> 533043.81250000000      4840580.50000000000
>> 532237.81250000000      4840571.50000000000
>> 531431.81250000000      4840562.50000000000
>> 530624.81250000000      4840559.50000000000
>> 529817.81250000000      4840556.50000000000
>> 544357.93750000000      4839892.50000000000
>> 542743.93750000000      4839876.50000000000
>> 541131.93750000000      4839852.50000000000
>> 539528.87500000000      4839840.50000000000
>> 537916.87500000000      4839821.50000000000
>> 536303.87500000000      4839804.50000000000
>> 534672.81250000000      4839794.50000000000
>> 533050.81250000000      4839778.50000000000
>> 531440.81250000000      4839759.50000000000
>> 529825.81250000000      4839749.50000000000
>> 544358.93750000000      4839089.50000000000
>> 543552.93750000000      4839080.50000000000
>> 542747.93750000000      4839072.50000000000
>> 541940.87500000000      4839059.50000000000
>> 541133.87500000000      4839046.50000000000
>> 540332.87500000000      4839040.50000000000
>> 539531.87500000000      4839034.50000000000
>> 538724.87500000000      4839024.50000000000
>> 537918.87500000000      4839015.50000000000
>> 537110.87500000000      4839004.50000000000
>> 536303.87500000000      4838994.50000000000
>> 535489.81250000000      4838990.50000000000
>> 534675.81250000000      4838986.50000000000
>> 533866.81250000000      4838981.50000000000
>> 533057.81250000000      4838976.50000000000
>> 532253.81250000000      4838966.50000000000
>> 531450.81250000000      4838957.50000000000
>> 530642.81250000000      4838949.50000000000
>> 529834.81250000000      4838942.50000000000
>> 544359.93750000000      4838278.50000000000
>> 542747.87500000000      4838263.50000000000
>> 541137.87500000000      4838242.50000000000
>> 539534.87500000000      4838228.50000000000
>> 537918.87500000000      4838210.50000000000
>> 536303.87500000000      4838187.50000000000
>> 534680.81250000000      4838174.50000000000
>> 533064.81250000000      4838165.50000000000
>> 531457.81250000000      4838148.50000000000
>> 529837.75000000000      4838137.50000000000
>> 544360.93750000000      4837467.50000000000
>> 543553.87500000000      4837460.50000000000
>> 542747.87500000000      4837454.50000000000
>> 541944.87500000000      4837446.50000000000
>> 541142.87500000000      4837438.50000000000
>> 540339.87500000000      4837430.50000000000
>> 539537.87500000000      4837422.50000000000
>> 538728.87500000000      4837413.50000000000
>> 537919.87500000000      4837405.50000000000
>> 537111.87500000000      4837392.50000000000
>> 536303.81250000000      4837380.50000000000
>> 535494.81250000000      4837371.50000000000
>> 534685.81250000000      4837362.50000000000
>> 533878.81250000000      4837358.50000000000
>> 533071.81250000000      4837354.50000000000
>> 532268.81250000000      4837347.50000000000
>> 531465.81250000000      4837340.50000000000
>> 530653.75000000000      4837336.50000000000
>> 529841.75000000000      4837333.50000000000
>> 544362.87500000000      4836662.50000000000
>> 542744.87500000000      4836643.50000000000
>> 541137.87500000000      4836632.50000000000
>> 539532.87500000000      4836618.50000000000
>> 537914.87500000000      4836595.50000000000
>> 536301.81250000000      4836574.50000000000
>> 534692.81250000000      4836553.50000000000
>> 533075.81250000000      4836547.50000000000
>> 531468.75000000000      4836535.50000000000
>> 544365.87500000000      4835857.50000000000
>> 544365.87500000000      4835857.50000000000
>> 543553.87500000000      4835845.50000000000
>> 542742.87500000000      4835833.50000000000
>> 541937.87500000000      4835830.50000000000
>> 541133.87500000000      4835827.50000000000
>> 540330.87500000000      4835821.50000000000
>> 539528.87500000000      4835815.50000000000
>> 538718.87500000000      4835800.50000000000
>> 537909.81250000000      4835785.50000000000
>> 537104.81250000000      4835777.50000000000
>> 536300.81250000000      4835769.50000000000
>> 535499.81250000000      4835756.50000000000
>> 534699.81250000000      4835744.50000000000
>> 533889.81250000000      4835742.50000000000
>> 533080.81250000000      4835740.50000000000
>> 532275.75000000000      4835735.50000000000
>> 531471.75000000000      4835731.50000000000
>> 544370.87500000000      4835052.50000000000
>> 542750.87500000000      4835025.50000000000
>> 541144.87500000000      4835014.50000000000
>> 539538.87500000000      4835004.50000000000
>> 537922.81250000000      4834987.50000000000
>> 536315.81250000000      4834974.50000000000
>> 544376.87500000000      4834248.50000000000
>> 543567.87500000000      4834232.50000000000
>> 542759.87500000000      4834217.50000000000
>> 541957.87500000000      4834209.50000000000
>> 541156.87500000000      4834201.50000000000
>> 540352.87500000000      4834197.50000000000
>> 539549.87500000000      4834193.50000000000
>> 538742.81250000000      4834191.50000000000
>> 537936.81250000000      4834190.50000000000
>> 537133.81250000000      4834185.50000000000
>> 536331.81250000000      4834180.50000000000
>> 544384.87500000000      4833445.50000000000
>> 542774.87500000000      4833414.50000000000
>> 541167.87500000000      4833395.50000000000
>> 539561.81250000000      4833387.50000000000
>> 537946.81250000000      4833385.50000000000
>> 544392.87500000000      4832643.50000000000
>> 543590.87500000000      4832627.50000000000
>> 542789.87500000000      4832612.50000000000
>> 541984.87500000000      4832600.50000000000
>> 541179.87500000000      4832589.50000000000
>> 540376.81250000000      4832585.50000000000
>> 539573.81250000000      4832581.50000000000
>> 537957.81250000000      4832580.50000000000
>> 538765.81250000000      4832580.50000000000
>> 544401.87500000000      4831836.50000000000
>> 542796.87500000000      4831805.50000000000
>> 544410.87500000000      4831029.50000000000
>> 543607.81250000000      4831014.50000000000
>> 542804.81250000000      4830999.50000000000
>> 544426.81250000000      4829417.50000000000
>> 544432.81250000000      4828612.50000000000
>> 544439.81250000000      4827808.50000000000
>> 544445.81250000000      4827000.50000000000
>> 544451.81250000000      4826193.50000000000
>> 581262.12500000000      4851357.00000000000
>> 579658.12500000000      4851338.00000000000
>> 574847.12500000000      4851324.00000000000
>> 576447.12500000000      4851320.00000000000
>> 573257.12500000000      4851317.00000000000
>> 578046.12500000000      4851312.00000000000
>> 570057.12500000000      4851309.00000000000
>> 571656.12500000000      4851308.00000000000
>> 568458.12500000000      4851294.00000000000
>> 566851.12500000000      4851277.00000000000
>> 565256.06250000000      4851271.00000000000
>> 563617.06250000000      4851230.00000000000
>> 555586.00000000000      4851224.00000000000
>> 560412.06250000000      4851220.00000000000
>> 562020.06250000000      4851220.00000000000
>> 547498.93750000000      4851208.00000000000
>> 558822.06250000000      4851206.00000000000
>> 557185.06250000000      4851198.00000000000
>> 553966.00000000000      4851194.00000000000
>> 552367.00000000000      4851191.00000000000
>> 550727.00000000000      4851184.00000000000
>> 549115.93750000000      4851169.00000000000
>> 545907.93750000000      4851158.00000000000
>> 581275.12500000000      4850554.00000000000
>> 582081.18750000000      4850551.00000000000
>> 580473.12500000000      4850543.50000000000
>> 579671.12500000000      4850534.00000000000
>> 578866.12500000000      4850522.00000000000
>> 574862.12500000000      4850519.00000000000
>> 573268.12500000000      4850518.00000000000
>> 574065.12500000000      4850518.00000000000
>> 572473.12500000000      4850516.00000000000
>> 575664.12500000000      4850516.00000000000
>> 571679.12500000000      4850515.00000000000
>> 570877.12500000000      4850513.00000000000
>> 576466.12500000000      4850513.00000000000
>> 570075.12500000000      4850512.00000000000
>> 577263.12500000000      4850512.00000000000
>> 578061.12500000000      4850511.00000000000
>> 569274.12500000000      4850500.00000000000
>> 565267.12500000000      4850489.00000000000
>> 568473.12500000000      4850489.00000000000
>> 566067.12500000000      4850485.00000000000
>> 567670.12500000000      4850485.00000000000
>> 566867.12500000000      4850482.00000000000
>> 564447.06250000000      4850470.00000000000
>> 563627.06250000000      4850451.00000000000
>> 562825.06250000000      4850442.00000000000
>> 562023.06250000000      4850434.00000000000
>> 561219.06250000000      4850433.00000000000
>> 560415.06250000000      4850432.00000000000
>> 559616.06250000000      4850417.00000000000
>> 555585.00000000000      4850415.00000000000
>> 556381.06250000000      4850404.00000000000
>> 558817.06250000000      4850403.00000000000
>> 547497.93750000000      4850402.00000000000
>> 554779.00000000000      4850399.00000000000
>> 557997.06250000000      4850398.00000000000
>> 557178.06250000000      4850394.00000000000
>> 553974.00000000000      4850383.00000000000
>> 548305.93750000000      4850382.00000000000
>> 546706.93750000000      4850380.00000000000
>> 553167.00000000000      4850379.00000000000
>> 552361.00000000000      4850375.00000000000
>> 551542.00000000000      4850371.00000000000
>> 550723.00000000000      4850367.00000000000
>> 549917.93750000000      4850365.00000000000
>> 549113.93750000000      4850363.00000000000
>> 544319.93750000000      4850358.00000000000
>> 545117.93750000000      4850358.00000000000
>> 545916.93750000000      4850358.00000000000
>> 581285.18750000000      4849747.50000000000
>> 579682.12500000000      4849730.50000000000
>> 578075.12500000000      4849716.00000000000
>> 571683.12500000000      4849713.00000000000
>> 573270.12500000000      4849713.00000000000
>> 574880.12500000000      4849712.00000000000
>> 576482.12500000000      4849710.00000000000
>> 570082.12500000000      4849703.00000000000
>> 568476.12500000000      4849680.00000000000
>> 566869.12500000000      4849678.00000000000
>> 565265.12500000000      4849670.00000000000
>> 563624.06250000000      4849641.00000000000
>> 562014.06250000000      4849631.00000000000
>> 560419.06250000000      4849626.00000000000
>> 555591.00000000000      4849603.00000000000
>> 558813.06250000000      4849600.00000000000
>> 557189.06250000000      4849591.00000000000
>> 547512.93750000000      4849587.00000000000
>> 553980.00000000000      4849572.00000000000
>> 552379.00000000000      4849566.00000000000
>> 549146.93750000000      4849562.00000000000
>> 550747.00000000000      4849559.00000000000
>> 544325.93750000000      4849551.00000000000
>> 545921.93750000000      4849547.00000000000
>> 582098.18750000000      4848945.50000000000
>> 581296.18750000000      4848941.50000000000
>> 580495.18750000000      4848934.50000000000
>> 579694.12500000000      4848927.50000000000
>> 578891.12500000000      4848924.50000000000
>> 578089.12500000000      4848921.50000000000
>> 577294.12500000000      4848915.00000000000
>> 571688.12500000000      4848912.00000000000
>> 572480.12500000000      4848910.00000000000
>> 573273.12500000000      4848908.00000000000
>> 576499.12500000000      4848908.00000000000
>> 574085.12500000000      4848907.00000000000
>> 575698.12500000000      4848907.00000000000
>> 574898.12500000000      4848906.00000000000
>> 570888.12500000000      4848903.00000000000
>> 570089.12500000000      4848895.00000000000
>> 569284.12500000000      4848883.00000000000
>> 566872.12500000000      4848875.00000000000
>> 567675.12500000000      4848873.00000000000
>> 568479.12500000000      4848872.00000000000
>> 566067.12500000000      4848863.00000000000
>> 565263.12500000000      4848851.00000000000
>> 564442.12500000000      4848841.00000000000
>> 563621.06250000000      4848832.00000000000
>> 562813.06250000000      4848830.00000000000
>> 562006.06250000000      4848829.00000000000
>> 561214.06250000000      4848825.00000000000
>> 560423.06250000000      4848821.00000000000
>> 559616.06250000000      4848809.00000000000
>> 558810.06250000000      4848798.00000000000
>> 558005.06250000000      4848793.00000000000
>> 555597.06250000000      4848792.00000000000
>> 556399.06250000000      4848790.00000000000
>> 557201.06250000000      4848789.00000000000
>> 554791.00000000000      4848777.00000000000
>> 547527.93750000000      4848773.00000000000
>> 548353.93750000000      4848767.00000000000
>> 549181.00000000000      4848762.00000000000
>> 553986.00000000000      4848762.00000000000
>> 553192.00000000000      4848760.00000000000
>> 552398.00000000000      4848758.00000000000
>> 549976.00000000000      4848757.00000000000
>> 546727.93750000000      4848755.00000000000
>> 551584.00000000000      4848755.00000000000
>> 550771.00000000000      4848752.00000000000
>> 544331.93750000000      4848743.50000000000
>> 545129.93750000000      4848739.50000000000
>> 545927.93750000000      4848736.50000000000
>> 581304.18750000000      4848141.50000000000
>> 579704.18750000000      4848128.50000000000
>> 578099.12500000000      4848122.50000000000
>> 576514.12500000000      4848111.50000000000
>> 571691.12500000000      4848109.00000000000
>> 574905.12500000000      4848106.00000000000
>> 573278.12500000000      4848105.00000000000
>> 570091.12500000000      4848091.00000000000
>> 568484.12500000000      4848071.00000000000
>> 566875.12500000000      4848065.00000000000
>> 565260.12500000000      4848050.00000000000
>> 563618.12500000000      4848033.00000000000
>> 562005.06250000000      4848027.00000000000
>> 560415.06250000000      4848025.00000000000
>> 558817.06250000000      4847990.00000000000
>> 555600.06250000000      4847988.00000000000
>> 557207.06250000000      4847985.00000000000
>> 547538.93750000000      4847963.50000000000
>> 553994.00000000000      4847960.00000000000
>> 549177.00000000000      4847951.00000000000
>> 552398.00000000000      4847951.00000000000
>> 550783.00000000000      4847949.00000000000
>> 544338.93750000000      4847939.50000000000
>> 545939.93750000000      4847935.50000000000
>> 582117.18750000000      4847351.50000000000
>> 581312.18750000000      4847341.50000000000
>> 580513.18750000000      4847335.50000000000
>> 579715.18750000000      4847330.50000000000
>> 578912.18750000000      4847327.50000000000
>> 578109.12500000000      4847324.50000000000
>> 577319.12500000000      4847320.50000000000
>> 576530.12500000000      4847316.50000000000
>> 575721.12500000000      4847311.50000000000
>> 574913.12500000000      4847306.50000000000
>> 571694.12500000000      4847306.00000000000
>> 572488.12500000000      4847304.00000000000
>> 574098.12500000000      4847304.00000000000
>> 573283.12500000000      4847302.00000000000
>> 570893.12500000000      4847297.00000000000
>> 570093.12500000000      4847288.00000000000
>> 569291.12500000000      4847279.00000000000
>> 568490.12500000000      4847271.00000000000
>> 567684.12500000000      4847263.00000000000
>> 566878.12500000000      4847255.00000000000
>> 566068.12500000000      4847252.00000000000
>> 565258.12500000000      4847250.00000000000
>> 564436.12500000000      4847242.00000000000
>> 563615.12500000000      4847234.00000000000
>> 560408.06250000000      4847230.00000000000
>> 562809.12500000000      4847229.00000000000
>> 561206.06250000000      4847227.00000000000
>> 562004.06250000000      4847225.00000000000
>> 559616.06250000000      4847206.00000000000
>> 555604.06250000000      4847184.00000000000
>> 556409.06250000000      4847183.00000000000
>> 558824.06250000000      4847183.00000000000
>> 557214.06250000000      4847182.00000000000
>> 558019.06250000000      4847182.00000000000
>> 554803.06250000000      4847171.00000000000
>> 554002.00000000000      4847158.00000000000
>> 547551.00000000000      4847154.50000000000
>> 553200.00000000000      4847151.00000000000
>> 548362.00000000000      4847147.50000000000
>> 550795.00000000000      4847146.00000000000
>> 551596.00000000000      4847145.00000000000
>> 552398.00000000000      4847145.00000000000
>> 546751.93750000000      4847144.50000000000
>> 549984.00000000000      4847142.50000000000
>> 549173.00000000000      4847140.50000000000
>> 544345.93750000000      4847135.50000000000
>> 545148.93750000000      4847134.50000000000
>> 545952.93750000000      4847134.50000000000
>> 581323.18750000000      4846533.50000000000
>> 579715.18750000000      4846521.50000000000
>> 578112.18750000000      4846514.50000000000
>> 576527.12500000000      4846510.50000000000
>> 571699.12500000000      4846503.00000000000
>> 574912.12500000000      4846502.50000000000
>> 573294.12500000000      4846494.50000000000
>> 570096.12500000000      4846484.00000000000
>> 568496.12500000000      4846467.00000000000
>> 566875.12500000000      4846448.00000000000
>> 565251.12500000000      4846440.00000000000
>> 563618.12500000000      4846427.00000000000
>> 562012.06250000000      4846418.00000000000
>> 560412.06250000000      4846401.00000000000
>> 558834.06250000000      4846375.00000000000
>> 557234.06250000000      4846372.00000000000
>> 555632.06250000000      4846365.00000000000
>> 554011.06250000000      4846350.00000000000
>> 547566.00000000000      4846343.50000000000
>> 552409.00000000000      4846342.00000000000
>> 550802.00000000000      4846334.50000000000
>> 549183.00000000000      4846333.50000000000
>> 545957.93750000000      4846332.50000000000
>> 582140.18750000000      4845730.50000000000
>> 581335.18750000000      4845725.50000000000
>> 580525.18750000000      4845719.50000000000
>> 579716.18750000000      4845713.50000000000
>> 578916.18750000000      4845708.50000000000
>> 576525.12500000000      4845705.50000000000
>> 577320.18750000000      4845704.50000000000
>> 578116.18750000000      4845704.50000000000
>> 575718.12500000000      4845701.50000000000
>> 571704.12500000000      4845699.50000000000
>> 574912.12500000000      4845698.50000000000
>> 572504.12500000000      4845693.50000000000
>> 574108.12500000000      4845692.50000000000
>> 570901.12500000000      4845689.50000000000
>> 573305.12500000000      4845687.50000000000
>> 570099.12500000000      4845681.00000000000
>> 569300.12500000000      4845672.00000000000
>> 568502.12500000000      4845664.00000000000
>> 567687.12500000000      4845653.00000000000
>> 566873.12500000000      4845642.00000000000
>> 566059.12500000000      4845636.00000000000
>> 565245.12500000000      4845630.00000000000
>> 564433.12500000000      4845625.00000000000
>> 563622.12500000000      4845621.00000000000
>> 562821.12500000000      4845616.00000000000
>> 562021.12500000000      4845611.00000000000
>> 561218.06250000000      4845591.00000000000
>> 560416.06250000000      4845572.00000000000
>> 559630.06250000000      4845569.00000000000
>> 558844.06250000000      4845567.00000000000
>> 558049.06250000000      4845564.00000000000
>> 557255.06250000000      4845562.00000000000
>> 556457.06250000000      4845554.00000000000
>> 555660.06250000000      4845547.00000000000
>> 554840.06250000000      4845544.00000000000
>> 554021.06250000000      4845541.50000000000
>> 553221.00000000000      4845539.50000000000
>> 552421.00000000000      4845538.50000000000
>> 547582.00000000000      4845532.50000000000
>> 546773.00000000000      4845531.50000000000
>> 551615.00000000000      4845531.50000000000
>> 545964.00000000000      4845530.50000000000
>> 548388.00000000000      4845529.50000000000
>> 549194.00000000000      4845527.50000000000
>> 550001.00000000000      4845525.50000000000
>> 550809.00000000000      4845524.50000000000
>> 545159.93750000000      4845523.50000000000
>> 544356.93750000000      4845516.50000000000
>> 581346.18750000000      4844925.50000000000
>> 576526.18750000000      4844915.50000000000
>> 579720.18750000000      4844914.50000000000
>> 578115.18750000000      4844909.50000000000
>> 574928.12500000000      4844898.50000000000
>> 571709.12500000000      4844888.50000000000
>> 573319.12500000000      4844886.50000000000
>> 570102.12500000000      4844857.50000000000
>> 568503.12500000000      4844856.50000000000
>> 566896.12500000000      4844830.00000000000
>> 562012.12500000000      4844826.00000000000
>> 565276.12500000000      4844819.00000000000
>> 563629.12500000000      4844816.00000000000
>> 560396.06250000000      4844803.00000000000
>> 558820.06250000000      4844781.00000000000
>> 557234.06250000000      4844754.00000000000
>> 555650.06250000000      4844752.50000000000
>> 554026.06250000000      4844749.50000000000
>> 545963.00000000000      4844748.50000000000
>> 552433.00000000000      4844746.50000000000
>> 547587.00000000000      4844733.50000000000
>> 549203.00000000000      4844717.50000000000
>> 550818.00000000000      4844702.50000000000
>> 582163.18750000000      4844137.50000000000
>> 576528.12500000000      4844126.50000000000
>> 581357.18750000000      4844125.50000000000
>> 577321.18750000000      4844120.50000000000
>> 580540.18750000000      4844120.50000000000
>> 578115.18750000000      4844115.50000000000
>> 578919.18750000000      4844115.50000000000
>> 579724.18750000000      4844115.50000000000
>> 575736.12500000000      4844112.50000000000
>> 574945.12500000000      4844099.50000000000
>> 574139.12500000000      4844092.50000000000
>> 573333.12500000000      4844086.50000000000
>> 572523.12500000000      4844082.50000000000
>> 571714.12500000000      4844078.50000000000
>> 570910.12500000000      4844056.50000000000
>> 568504.12500000000      4844049.50000000000
>> 569305.12500000000      4844042.50000000000
>> 562003.12500000000      4844041.00000000000
>> 561189.06250000000      4844038.00000000000
>> 570106.12500000000      4844035.50000000000
>> 560376.06250000000      4844035.00000000000
>> 567712.12500000000      4844033.50000000000
>> 562820.12500000000      4844026.00000000000
>> 566920.12500000000      4844018.50000000000
>> 559586.06250000000      4844015.00000000000
>> 566114.12500000000      4844013.00000000000
>> 563637.12500000000      4844012.00000000000
>> 564472.12500000000      4844010.00000000000
>> 565308.12500000000      4844008.00000000000
>> 558796.06250000000      4843996.00000000000
>> 558004.06250000000      4843971.00000000000
>> 545962.00000000000      4843967.50000000000
>> 555640.06250000000      4843958.50000000000
>> 554032.06250000000      4843957.50000000000
>> 554836.06250000000      4843957.50000000000
>> 553239.06250000000      4843955.50000000000
>> 552446.00000000000      4843954.50000000000
>> 556426.06250000000      4843952.50000000000
>> 546777.00000000000      4843950.50000000000
>> 557213.06250000000      4843946.50000000000
>> 545160.00000000000      4843937.50000000000
>> 547592.00000000000      4843934.50000000000
>> 548402.00000000000      4843921.50000000000
>> 551636.00000000000      4843917.50000000000
>> 549213.00000000000      4843908.50000000000
>> 544357.93750000000      4843907.50000000000
>> 550020.00000000000      4843894.50000000000
>> 550827.00000000000      4843881.50000000000
>> 581372.18750000000      4843321.50000000000
>> 576554.12500000000      4843318.50000000000
>> 578144.12500000000      4843307.50000000000
>> 579753.12500000000      4843307.50000000000
>> 574958.12500000000      4843303.50000000000
>> 573341.12500000000      4843282.50000000000
>> 571723.12500000000      4843267.50000000000
>> 568510.12500000000      4843239.50000000000
>> 562005.06250000000      4843235.00000000000
>> 570114.12500000000      4843231.50000000000
>> 560386.06250000000      4843228.00000000000
>> 566916.12500000000      4843211.50000000000
>> 563643.06250000000      4843210.00000000000
>> 565305.12500000000      4843205.00000000000
>> 558784.06250000000      4843194.00000000000
>> 545978.00000000000      4843161.50000000000
>> 555639.06250000000      4843157.50000000000
>> 552444.00000000000      4843149.50000000000
>> 554037.00000000000      4843147.50000000000
>> 557208.06250000000      4843137.50000000000
>> 547616.00000000000      4843134.50000000000
>> 549224.00000000000      4843111.50000000000
>> 550848.00000000000      4843084.50000000000
>> 581387.12500000000      4842517.50000000000
>> 576581.12500000000      4842511.50000000000
>> 575776.12500000000      4842509.50000000000
>> 574971.12500000000      4842508.50000000000
>> 580584.12500000000      4842508.50000000000
>> 577377.12500000000      4842505.50000000000
>> 579782.12500000000      4842500.50000000000
>> 578174.12500000000      4842499.50000000000
>> 578978.12500000000      4842499.50000000000
>> 574160.12500000000      4842493.50000000000
>> 573349.12500000000      4842479.50000000000
>> 572540.12500000000      4842468.50000000000
>> 571732.12500000000      4842457.50000000000
>> 570927.12500000000      4842442.50000000000
>> 568516.12500000000      4842430.50000000000
>> 562007.06250000000      4842430.00000000000
>> 569319.12500000000      4842429.50000000000
>> 570122.12500000000      4842428.50000000000
>> 561202.06250000000      4842425.00000000000
>> 560397.06250000000      4842421.00000000000
>> 562828.06250000000      4842419.00000000000
>> 567714.12500000000      4842417.50000000000
>> 563649.06250000000      4842408.00000000000
>> 559584.06250000000      4842407.00000000000
>> 564476.06250000000      4842405.00000000000
>> 566913.06250000000      4842404.50000000000
>> 566108.06250000000      4842403.50000000000
>> 565303.06250000000      4842402.50000000000
>> 558772.06250000000      4842393.00000000000
>> 557987.06250000000      4842360.50000000000
>> 555639.06250000000      4842356.50000000000
>> 545993.93750000000      4842355.50000000000
>> 554841.00000000000      4842347.50000000000
>> 552442.00000000000      4842345.50000000000
>> 546817.00000000000      4842344.50000000000
>> 556421.06250000000      4842342.50000000000
>> 553242.00000000000      4842341.50000000000
>> 554043.00000000000      4842338.50000000000
>> 547641.00000000000      4842334.50000000000
>> 545174.93750000000      4842330.50000000000
>> 557203.06250000000      4842329.50000000000
>> 548438.00000000000      4842324.50000000000
>> 551655.00000000000      4842316.50000000000
>> 549235.00000000000      4842315.50000000000
>> 544356.93750000000      4842305.50000000000
>> 550052.00000000000      4842301.50000000000
>> 550869.00000000000      4842287.50000000000
>> 581398.12500000000      4841720.50000000000
>> 576589.12500000000      4841709.50000000000
>> 579794.12500000000      4841702.50000000000
>> 574973.12500000000      4841701.50000000000
>> 578196.12500000000      4841697.50000000000
>> 573357.12500000000      4841672.50000000000
>> 571748.12500000000      4841652.50000000000
>> 568517.06250000000      4841624.50000000000
>> 570131.06250000000      4841624.50000000000
>> 562021.06250000000      4841618.00000000000
>> 560402.06250000000      4841610.00000000000
>> 563673.06250000000      4841604.00000000000
>> 566917.06250000000      4841595.50000000000
>> 565297.06250000000      4841593.50000000000
>> 558787.06250000000      4841588.00000000000
>> 555644.00000000000      4841557.50000000000
>> 554047.00000000000      4841548.50000000000
>> 546000.93750000000      4841545.50000000000
>> 552442.00000000000      4841544.50000000000
>> 557225.06250000000      4841542.50000000000
>> 547637.93750000000      4841530.50000000000
>> 549244.00000000000      4841505.50000000000
>> 544356.93750000000      4841500.50000000000
>> 550860.00000000000      4841487.50000000000
>> 581409.12500000000      4840923.50000000000
>> 580607.12500000000      4840914.50000000000
>> 576597.12500000000      4840907.50000000000
>> 579806.12500000000      4840905.50000000000
>> 577408.12500000000      4840901.50000000000
>> 575786.12500000000      4840900.50000000000
>> 579012.12500000000      4840900.50000000000
>> 578219.12500000000      4840895.50000000000
>> 574976.12500000000      4840894.50000000000
>> 574171.12500000000      4840879.50000000000
>> 573366.12500000000      4840865.50000000000
>> 572565.06250000000      4840856.50000000000
>> 571764.06250000000      4840847.50000000000
>> 570952.06250000000      4840834.50000000000
>> 570140.06250000000      4840821.50000000000
>> 569329.06250000000      4840819.50000000000
>> 568519.06250000000      4840818.50000000000
>> 562035.06250000000      4840806.00000000000
>> 562866.06250000000      4840803.00000000000
>> 567720.06250000000      4840802.50000000000
>> 561221.06250000000      4840802.00000000000
>> 563697.06250000000      4840800.50000000000
>> 560407.06250000000      4840799.00000000000
>> 564494.06250000000      4840792.50000000000
>> 559604.06250000000      4840791.00000000000
>> 566921.06250000000      4840787.50000000000
>> 566106.06250000000      4840786.50000000000
>> 565292.06250000000      4840785.50000000000
>> 558802.06250000000      4840782.50000000000
>> 558024.00000000000      4840769.50000000000
>> 554051.00000000000      4840758.50000000000
>> 554850.00000000000      4840758.50000000000
>> 555650.00000000000      4840758.50000000000
>> 556448.00000000000      4840757.50000000000
>> 557247.00000000000      4840756.50000000000
>> 553247.00000000000      4840750.50000000000
>> 552443.00000000000      4840743.50000000000
>> 546007.93750000000      4840735.50000000000
>> 546820.93750000000      4840731.50000000000
>> 547634.93750000000      4840727.50000000000
>> 545181.93750000000      4840715.50000000000
>> 551647.00000000000      4840715.50000000000
>> 548443.93750000000      4840711.50000000000
>> 549254.00000000000      4840696.50000000000
>> 544356.93750000000      4840695.50000000000
>> 550052.00000000000      4840692.50000000000
>> 550851.00000000000      4840688.50000000000
>> 581421.12500000000      4840125.50000000000
>> 576605.12500000000      4840110.50000000000
>> 579812.12500000000      4840104.50000000000
>> 578218.12500000000      4840095.50000000000
>> 574986.06250000000      4840081.50000000000
>> 573369.06250000000      4840065.50000000000
>> 571770.06250000000      4840047.50000000000
>> 570151.06250000000      4840026.50000000000
>> 568532.06250000000      4840011.50000000000
>> 562045.06250000000      4840002.00000000000
>> 560424.06250000000      4839997.00000000000
>> 563702.06250000000      4839992.50000000000
>> 566925.06250000000      4839982.50000000000
>> 558824.00000000000      4839981.50000000000
>> 565306.06250000000      4839976.50000000000
>> 557250.00000000000      4839959.50000000000
>> 554044.00000000000      4839949.50000000000
>> 555645.00000000000      4839947.50000000000
>> 552435.00000000000      4839938.50000000000
>> 546011.93750000000      4839931.50000000000
>> 547633.93750000000      4839915.50000000000
>> 549246.93750000000      4839900.50000000000
>> 544357.93750000000      4839892.50000000000
>> 550840.00000000000      4839889.50000000000
>> 581434.12500000000      4839328.50000000000
>> 580626.12500000000      4839316.50000000000
>> 576613.06250000000      4839314.50000000000
>> 577415.06250000000      4839304.50000000000
>> 579819.12500000000      4839304.50000000000
>> 579018.06250000000      4839299.50000000000
>> 578218.06250000000      4839295.50000000000
>> 575805.06250000000      4839291.50000000000
>> 574997.06250000000      4839269.50000000000
>> 574185.06250000000      4839267.50000000000
>> 573373.06250000000      4839265.50000000000
>> 572575.06250000000      4839256.50000000000
>> 571777.06250000000      4839247.50000000000
>> 570970.06250000000      4839239.50000000000
>> 570163.06250000000      4839231.50000000000
>> 569354.06250000000      4839218.50000000000
>> 568546.06250000000      4839205.50000000000
>> 562055.06250000000      4839197.50000000000
>> 561248.00000000000      4839195.50000000000
>> 560441.00000000000      4839195.00000000000
>> 562881.06250000000      4839191.50000000000
>> 567738.06250000000      4839191.50000000000
>> 559643.00000000000      4839187.50000000000
>> 563707.06250000000      4839185.50000000000
>> 558846.00000000000      4839181.50000000000
>> 566930.06250000000      4839177.50000000000
>> 564513.06250000000      4839176.50000000000
>> 566125.06250000000      4839172.50000000000
>> 558050.00000000000      4839171.50000000000
>> 565320.06250000000      4839167.50000000000
>> 557254.00000000000      4839162.50000000000
>> 556447.00000000000      4839149.50000000000
>> 554038.00000000000      4839141.50000000000
>> 554839.00000000000      4839139.50000000000
>> 553232.00000000000      4839137.50000000000
>> 555641.00000000000      4839137.50000000000
>> 552427.00000000000      4839133.50000000000
>> 546015.93750000000      4839128.50000000000
>> 546823.93750000000      4839115.50000000000
>> 551628.00000000000      4839112.50000000000
>> 545186.93750000000      4839108.50000000000
>> 549240.93750000000      4839105.50000000000
>> 548436.93750000000      4839104.50000000000
>> 547632.93750000000      4839103.50000000000
>> 550034.93750000000      4839098.50000000000
>> 550829.93750000000      4839091.50000000000
>> 544358.93750000000      4839089.50000000000
>> 581441.06250000000      4838524.50000000000
>> 576619.06250000000      4838498.50000000000
>> 579823.06250000000      4838498.50000000000
>> 578221.06250000000      4838493.50000000000
>> 575001.06250000000      4838471.50000000000
>> 573380.06250000000      4838463.50000000000
>> 571779.06250000000      4838449.50000000000
>> 570172.06250000000      4838418.50000000000
>> 568563.06250000000      4838402.50000000000
>> 562071.00000000000      4838384.50000000000
>> 563719.00000000000      4838382.50000000000
>> 560457.00000000000      4838380.50000000000
>> 566952.06250000000      4838375.50000000000
>> 558857.00000000000      4838370.50000000000
>> 565342.06250000000      4838356.50000000000
>> 557260.00000000000      4838353.50000000000
>> 554040.00000000000      4838333.50000000000
>> 555656.00000000000      4838332.50000000000
>> 552428.93750000000      4838320.50000000000
>> 546008.93750000000      4838311.50000000000
>> 547626.93750000000      4838295.50000000000
>> 549236.93750000000      4838294.50000000000
>> 550824.93750000000      4838290.50000000000
>> 544359.93750000000      4838278.50000000000
>> 581449.06250000000      4837721.50000000000
>> 580638.06250000000      4837706.50000000000
>> 578224.06250000000      4837692.50000000000
>> 579025.06250000000      4837692.50000000000
>> 579827.06250000000      4837692.50000000000
>> 577424.06250000000      4837687.50000000000
>> 576625.06250000000      4837682.50000000000
>> 575815.06250000000      4837678.50000000000
>> 575006.06250000000      4837674.50000000000
>> 574196.06250000000      4837668.50000000000
>> 573387.06250000000      4837662.50000000000
>> 572584.06250000000      4837656.50000000000
>> 571782.06250000000      4837651.50000000000
>> 570981.06250000000      4837628.50000000000
>> 570181.06250000000      4837606.50000000000
>> 569380.06250000000      4837602.50000000000
>> 568580.06250000000      4837599.50000000000
>> 567777.00000000000      4837586.50000000000
>> 563731.00000000000      4837579.50000000000
>> 562909.00000000000      4837575.50000000000
>> 566975.00000000000      4837574.50000000000
>> 562088.00000000000      4837572.50000000000
>> 561281.00000000000      4837569.50000000000
>> 560474.00000000000      4837567.50000000000
>> 559671.00000000000      4837563.50000000000
>> 564548.00000000000      4837562.50000000000
>> 566170.00000000000      4837560.50000000000
>> 558868.00000000000      4837559.50000000000
>> 558067.00000000000      4837551.50000000000
>> 565365.00000000000      4837546.50000000000
>> 557266.00000000000      4837544.50000000000
>> 556469.00000000000      4837536.50000000000
>> 555672.00000000000      4837528.50000000000
>> 554857.00000000000      4837526.50000000000
>> 554041.93750000000      4837525.50000000000
>> 553236.93750000000      4837516.50000000000
>> 552431.93750000000      4837508.50000000000
>> 551625.93750000000      4837498.50000000000
>> 546002.93750000000      4837494.50000000000
>> 546811.93750000000      4837491.50000000000
>> 550819.93750000000      4837489.50000000000
>> 547620.93750000000      4837488.50000000000
>> 550026.93750000000      4837486.50000000000
>> 548426.93750000000      4837485.50000000000
>> 549233.93750000000      4837483.50000000000
>> 545181.93750000000      4837480.50000000000
>> 544360.93750000000      4837467.50000000000
>> 581448.06250000000      4836922.50000000000
>> 579835.06250000000      4836895.50000000000
>> 578223.06250000000      4836888.50000000000
>> 576630.06250000000      4836881.50000000000
>> 575004.06250000000      4836873.50000000000
>> 573398.06250000000      4836858.50000000000
>> 571790.06250000000      4836850.50000000000
>> 570187.00000000000      4836823.50000000000
>> 568582.00000000000      4836801.50000000000
>> 563734.00000000000      4836780.50000000000
>> 566960.00000000000      4836778.50000000000
>> 562117.00000000000      4836769.50000000000
>> 560503.00000000000      4836759.50000000000
>> 565353.00000000000      4836758.50000000000
>> 558891.00000000000      4836751.50000000000
>> 557286.00000000000      4836736.50000000000
>> 555682.93750000000      4836724.50000000000
>> 554045.93750000000      4836716.50000000000
>> 552432.93750000000      4836704.50000000000
>> 550821.93750000000      4836689.50000000000
>> 547610.93750000000      4836679.50000000000
>> 549224.93750000000      4836678.50000000000
>> 545997.93750000000      4836676.50000000000
>> 581447.06250000000      4836123.50000000000
>> 580645.06250000000      4836111.50000000000
>> 579843.06250000000      4836099.50000000000
>> 579032.06250000000      4836092.50000000000
>> 578222.06250000000      4836085.50000000000
>> 577429.06250000000      4836083.50000000000
>> 576636.06250000000      4836081.50000000000
>> 575819.06250000000      4836076.50000000000
>> 575003.06250000000      4836072.50000000000
>> 574206.00000000000      4836063.50000000000
>> 573409.00000000000      4836054.50000000000
>> 572603.00000000000      4836052.50000000000
>> 571798.00000000000      4836050.50000000000
>> 570995.00000000000      4836045.50000000000
>> 570193.00000000000      4836041.50000000000
>> 569389.00000000000      4836022.50000000000
>> 568585.00000000000      4836004.50000000000
>> 567765.00000000000      4835993.50000000000
>> 566946.00000000000      4835982.50000000000
>> 563737.00000000000      4835981.50000000000
>> 564539.00000000000      4835976.50000000000
>> 566144.00000000000      4835976.50000000000
>> 562942.00000000000      4835973.50000000000
>> 565342.00000000000      4835971.50000000000
>> 562147.00000000000      4835966.50000000000
>> 561340.00000000000      4835958.50000000000
>> 560533.00000000000      4835951.50000000000
>> 559724.00000000000      4835947.50000000000
>> 558915.00000000000      4835943.50000000000
>> 558111.00000000000      4835936.50000000000
>> 557306.93750000000      4835929.50000000000
>> 556499.93750000000      4835925.50000000000
>> 555693.93750000000      4835921.50000000000
>> 554871.93750000000      4835914.50000000000
>> 554049.93750000000      4835907.50000000000
>> 553241.93750000000      4835903.50000000000
>> 552434.93750000000      4835900.50000000000
>> 551628.93750000000      4835895.50000000000
>> 550823.93750000000      4835890.50000000000
>> 550019.93750000000      4835882.50000000000
>> 549215.93750000000      4835874.50000000000
>> 548408.93750000000      4835872.50000000000
>> 547601.93750000000      4835870.50000000000
>> 546796.87500000000      4835864.50000000000
>> 545992.87500000000      4835859.50000000000
>> 545178.87500000000      4835858.50000000000
>> 544365.87500000000      4835857.50000000000
>> 544365.87500000000      4835857.50000000000
>> 581447.06250000000      4835324.50000000000
>> 579842.06250000000      4835300.50000000000
>> 578220.00000000000      4835292.50000000000
>> 576633.00000000000      4835275.50000000000
>> 575012.00000000000      4835267.50000000000
>> 573413.00000000000      4835257.50000000000
>> 571812.00000000000      4835246.50000000000
>> 570202.00000000000      4835244.50000000000
>> 568597.00000000000      4835212.50000000000
>> 566971.00000000000      4835186.50000000000
>> 565357.00000000000      4835176.50000000000
>> 563749.00000000000      4835173.50000000000
>> 562148.00000000000      4835143.50000000000
>> 558920.93750000000      4835137.50000000000
>> 557310.93750000000      4835132.50000000000
>> 560542.00000000000      4835125.50000000000
>> 555701.93750000000      4835118.50000000000
>> 552442.93750000000      4835112.50000000000
>> 554061.93750000000      4835106.50000000000
>> 550832.93750000000      4835101.50000000000
>> 549221.93750000000      4835089.50000000000
>> 547605.87500000000      4835083.50000000000
>> 545994.87500000000      4835073.50000000000
>> 581447.06250000000      4834526.50000000000
>> 580644.00000000000      4834514.50000000000
>> 579842.00000000000      4834502.50000000000
>> 579030.00000000000      4834501.50000000000
>> 578219.00000000000      4834500.50000000000
>> 577424.00000000000      4834484.50000000000
>> 576630.00000000000      4834469.50000000000
>> 575826.00000000000      4834466.50000000000
>> 575022.00000000000      4834463.50000000000
>> 574219.00000000000      4834461.50000000000
>> 573417.00000000000      4834460.50000000000
>> 572621.00000000000      4834451.50000000000
>> 570211.00000000000      4834448.50000000000
>> 571018.00000000000      4834445.50000000000
>> 571826.00000000000      4834443.50000000000
>> 569410.00000000000      4834434.50000000000
>> 568610.00000000000      4834420.50000000000
>> 567803.00000000000      4834405.50000000000
>> 566997.00000000000      4834391.50000000000
>> 566185.00000000000      4834386.50000000000
>> 565373.00000000000      4834382.50000000000
>> 564567.00000000000      4834374.50000000000
>> 563762.00000000000      4834366.50000000000
>> 562956.00000000000      4834343.50000000000
>> 557315.93750000000      4834336.50000000000
>> 558121.93750000000      4834333.50000000000
>> 558927.93750000000      4834331.50000000000
>> 556512.93750000000      4834326.50000000000
>> 552451.93750000000      4834324.50000000000
>> 562150.00000000000      4834321.50000000000
>> 551646.93750000000      4834318.50000000000
>> 555710.93750000000      4834316.50000000000
>> 553262.93750000000      4834315.50000000000
>> 559739.93750000000      4834315.50000000000
>> 550842.93750000000      4834312.50000000000
>> 554892.93750000000      4834311.50000000000
>> 561350.93750000000      4834310.50000000000
>> 550034.93750000000      4834308.50000000000
>> 554074.93750000000      4834306.50000000000
>> 549227.87500000000      4834305.50000000000
>> 548418.87500000000      4834300.50000000000
>> 560551.93750000000      4834299.50000000000
>> 547609.87500000000      4834296.50000000000
>> 546802.87500000000      4834291.50000000000
>> 545996.87500000000      4834287.50000000000
>> 545186.87500000000      4834267.50000000000
>> 544376.87500000000      4834248.50000000000
>> 581457.00000000000      4833732.50000000000
>> 579853.00000000000      4833711.50000000000
>> 578226.00000000000      4833700.50000000000
>> 576636.00000000000      4833667.50000000000
>> 575031.00000000000      4833663.50000000000
>> 573422.00000000000      4833657.50000000000
>> 571827.00000000000      4833650.50000000000
>> 570217.00000000000      4833637.50000000000
>> 568611.00000000000      4833622.50000000000
>> 567003.00000000000      4833596.50000000000
>> 565384.00000000000      4833583.50000000000
>> 563763.93750000000      4833556.50000000000
>> 557330.93750000000      4833529.50000000000
>> 558945.93750000000      4833524.50000000000
>> 552465.93750000000      4833518.50000000000
>> 562156.93750000000      4833514.50000000000
>> 555725.93750000000      4833513.50000000000
>> 550854.87500000000      4833506.50000000000
>> 554079.93750000000      4833505.50000000000
>> 549239.87500000000      4833499.50000000000
>> 560562.93750000000      4833496.50000000000
>> 547621.87500000000      4833489.50000000000
>> 546007.87500000000      4833483.50000000000
>> 581467.00000000000      4832939.50000000000
>> 580666.00000000000      4832930.50000000000
>> 579865.00000000000      4832921.50000000000
>> 579049.00000000000      4832911.50000000000
>> 578233.00000000000      4832901.50000000000
>> 577437.00000000000      4832883.50000000000
>> 576642.00000000000      4832866.50000000000
>> 575841.00000000000      4832865.50000000000
>> 575041.00000000000      4832864.50000000000
>> 574234.00000000000      4832859.50000000000
>> 571828.00000000000      4832858.50000000000
>> 572628.00000000000      4832856.50000000000
>> 573428.00000000000      4832854.50000000000
>> 571026.00000000000      4832842.50000000000
>> 570224.00000000000      4832826.50000000000
>> 569418.00000000000      4832825.50000000000
>> 568612.93750000000      4832824.50000000000
>> 567810.93750000000      4832813.50000000000
>> 567008.93750000000      4832802.50000000000
>> 566201.93750000000      4832793.50000000000
>> 565394.93750000000      4832784.50000000000
>> 564580.93750000000      4832765.50000000000
>> 563766.93750000000      4832747.50000000000
>> 562964.93750000000      4832727.50000000000
>> 557345.93750000000      4832722.50000000000
>> 558154.93750000000      4832719.50000000000
>> 558964.93750000000      4832717.50000000000
>> 556542.93750000000      4832716.50000000000
>> 552479.87500000000      4832712.50000000000
>> 555740.93750000000      4832711.50000000000
>> 553282.93750000000      4832708.50000000000
>> 554912.93750000000      4832708.50000000000
>> 562163.93750000000      4832707.50000000000
>> 551672.87500000000      4832706.50000000000
>> 554085.93750000000      4832705.50000000000
>> 559769.93750000000      4832705.50000000000
>> 550866.87500000000      4832701.50000000000
>> 561368.93750000000      4832700.50000000000
>> 550058.87500000000      4832697.50000000000
>> 549251.87500000000      4832693.50000000000
>> 560574.93750000000      4832693.50000000000
>> 548442.87500000000      4832687.50000000000
>> 547633.87500000000      4832682.50000000000
>> 546825.87500000000      4832681.50000000000
>> 546018.87500000000      4832680.50000000000
>> 545205.87500000000      4832661.50000000000
>> 544392.87500000000      4832643.50000000000
>> 581476.00000000000      4832138.50000000000
>> 579873.00000000000      4832116.50000000000
>> 578245.00000000000      4832101.50000000000
>> 576648.00000000000      4832074.50000000000
>> 575038.00000000000      4832061.50000000000
>> 573441.00000000000      4832052.50000000000
>> 571835.93750000000      4832043.50000000000
>> 570233.93750000000      4832033.50000000000
>> 568621.93750000000      4832028.50000000000
>> 567014.93750000000      4832006.50000000000
>> 565406.93750000000      4831986.50000000000
>> 563776.93750000000      4831957.50000000000
>> 557360.93750000000      4831920.50000000000
>> 558973.93750000000      4831916.50000000000
>> 555755.93750000000      4831910.50000000000
>> 552481.87500000000      4831909.50000000000
>> 562171.93750000000      4831909.50000000000
>> 554087.87500000000      4831898.50000000000
>> 550861.87500000000      4831895.50000000000
>> 549252.87500000000      4831890.50000000000
>> 560583.93750000000      4831890.50000000000
>> 547638.87500000000      4831877.50000000000
>> 546023.87500000000      4831876.50000000000
>> 544401.87500000000      4831836.50000000000
>> 581486.00000000000      4831338.50000000000
>> 580683.00000000000      4831325.50000000000
>> 579881.00000000000      4831312.50000000000
>> 579069.00000000000      4831306.50000000000
>> 578258.00000000000      4831301.50000000000
>> 577455.93750000000      4831292.50000000000
>> 576653.93750000000      4831283.50000000000
>> 575844.93750000000      4831271.50000000000
>> 575035.93750000000      4831259.50000000000
>> 574244.93750000000      4831255.50000000000
>> 573453.93750000000      4831251.50000000000
>> 570243.93750000000      4831240.50000000000
>> 572648.93750000000      4831239.50000000000
>> 569436.93750000000      4831236.50000000000
>> 571043.93750000000      4831234.50000000000
>> 568630.93750000000      4831232.50000000000
>> 571843.93750000000      4831228.50000000000
>> 567825.93750000000      4831221.50000000000
>> 567020.93750000000      4831210.50000000000
>> 566219.93750000000      4831199.50000000000
>> 565418.93750000000      4831188.50000000000
>> 564602.93750000000      4831178.50000000000
>> 563786.93750000000      4831168.50000000000
>> 562983.93750000000      4831140.50000000000
>> 557375.93750000000      4831118.50000000000
>> 558179.93750000000      4831116.50000000000
>> 558983.93750000000      4831115.50000000000
>> 556572.87500000000      4831113.50000000000
>> 562180.93750000000      4831112.50000000000
>> 555770.87500000000      4831109.50000000000
>> 552483.87500000000      4831106.50000000000
>> 559787.93750000000      4831101.50000000000
>> 554930.87500000000      4831100.50000000000
>> 561386.93750000000      4831099.50000000000
>> 553286.87500000000      4831098.50000000000
>> 551670.87500000000      4831097.50000000000
>> 554090.87500000000      4831091.50000000000
>> 550857.87500000000      4831089.50000000000
>> 550055.87500000000      4831088.50000000000
>> 549253.87500000000      4831087.50000000000
>> 560592.93750000000      4831087.50000000000
>> 548448.87500000000      4831080.50000000000
>> 547644.87500000000      4831073.50000000000
>> 546028.87500000000      4831072.50000000000
>> 546836.87500000000      4831072.50000000000
>> 545219.87500000000      4831050.50000000000
>> 544410.87500000000      4831029.50000000000
>> 581499.00000000000      4830538.50000000000
>> 579882.93750000000      4830520.50000000000
>> 578263.93750000000      4830494.50000000000
>> 576656.93750000000      4830485.50000000000
>> 575042.93750000000      4830457.50000000000
>> 573458.93750000000      4830452.50000000000
>> 571849.93750000000      4830437.50000000000
>> 570253.93750000000      4830435.50000000000
>> 568641.93750000000      4830425.50000000000
>> 567027.93750000000      4830403.50000000000
>> 565418.93750000000      4830379.50000000000
>> 563795.93750000000      4830365.50000000000
>> 562196.93750000000      4830319.50000000000
>> 557389.87500000000      4830316.50000000000
>> 558993.93750000000      4830314.50000000000
>> 555783.87500000000      4830310.50000000000
>> 560601.93750000000      4830307.50000000000
>> 552489.87500000000      4830301.50000000000
>> 554100.87500000000      4830297.50000000000
>> 550872.87500000000      4830287.50000000000
>> 549268.87500000000      4830279.50000000000
>> 546043.87500000000      4830263.50000000000
>> 547657.87500000000      4830262.50000000000
>> 544418.81250000000      4830223.50000000000
>> 581511.93750000000      4829738.50000000000
>> 580698.93750000000      4829733.50000000000
>> 579885.93750000000      4829728.50000000000
>> 579077.93750000000      4829708.50000000000
>> 576659.93750000000      4829688.50000000000
>> 577464.93750000000      4829688.50000000000
>> 578270.93750000000      4829688.50000000000
>> 575854.93750000000      4829672.50000000000
>> 575050.93750000000      4829656.50000000000
>> 574257.93750000000      4829654.50000000000
>> 573464.93750000000      4829653.50000000000
>> 572659.93750000000      4829649.50000000000
>> 571855.93750000000      4829646.50000000000
>> 571059.93750000000      4829638.50000000000
>> 570263.93750000000      4829630.50000000000
>> 569457.93750000000      4829624.50000000000
>> 568652.93750000000      4829618.50000000000
>> 567843.93750000000      4829607.50000000000
>> 567035.93750000000      4829597.50000000000
>> 566226.93750000000      4829584.50000000000
>> 565418.93750000000      4829571.50000000000
>> 564611.93750000000      4829567.50000000000
>> 563804.93750000000      4829563.50000000000
>> 563008.93750000000      4829545.50000000000
>> 560611.87500000000      4829528.50000000000
>> 561411.93750000000      4829527.50000000000
>> 562212.93750000000      4829527.50000000000
>> 559807.87500000000      4829521.50000000000
>> 557403.87500000000      4829515.50000000000
>> 558203.87500000000      4829514.50000000000
>> 559004.87500000000      4829514.50000000000
>> 556599.87500000000      4829513.50000000000
>> 555796.87500000000      4829512.50000000000
>> 554953.87500000000      4829507.50000000000
>> 554111.87500000000      4829503.50000000000
>> 553303.87500000000      4829499.50000000000
>> 552496.87500000000      4829496.50000000000
>> 551691.87500000000      4829491.50000000000
>> 550887.87500000000      4829486.50000000000
>> 550085.87500000000      4829478.50000000000
>> 549283.87500000000      4829471.50000000000
>> 548476.87500000000      4829461.50000000000
>> 546059.81250000000      4829455.50000000000
>> 546864.81250000000      4829453.50000000000
>> 547670.87500000000      4829451.50000000000
>> 545242.81250000000      4829436.50000000000
>> 544426.81250000000      4829417.50000000000
>> 581522.93750000000      4828937.50000000000
>> 579898.93750000000      4828926.50000000000
>> 578283.93750000000      4828894.50000000000
>> 576673.93750000000      4828887.50000000000
>> 575063.93750000000      4828860.50000000000
>> 573478.93750000000      4828856.50000000000
>> 571872.93750000000      4828837.50000000000
>> 570274.93750000000      4828820.50000000000
>> 568659.93750000000      4828817.50000000000
>> 567048.93750000000      4828792.50000000000
>> 565432.87500000000      4828770.50000000000
>> 563809.87500000000      4828762.50000000000
>> 562218.87500000000      4828728.50000000000
>> 560620.87500000000      4828723.50000000000
>> 559008.87500000000      4828715.50000000000
>> 557405.87500000000      4828710.50000000000
>> 555793.87500000000      4828708.50000000000
>> 554113.87500000000      4828700.50000000000
>> 552504.87500000000      4828692.50000000000
>> 550893.87500000000      4828679.50000000000
>> 549288.87500000000      4828664.50000000000
>> 546057.81250000000      4828647.50000000000
>> 547675.81250000000      4828646.50000000000
>> 581534.93750000000      4828137.50000000000
>> 580723.93750000000      4828131.50000000000
>> 579912.93750000000      4828125.50000000000
>> 579104.93750000000      4828113.50000000000
>> 578296.93750000000      4828101.50000000000
>> 577491.93750000000      4828094.50000000000
>> 576687.93750000000      4828087.50000000000
>> 575882.93750000000      4828075.50000000000
>> 575077.93750000000      4828064.50000000000
>> 574284.93750000000      4828062.50000000000
>> 573492.93750000000      4828060.50000000000
>> 572690.93750000000      4828044.50000000000
>> 571889.93750000000      4828029.50000000000
>> 571087.93750000000      4828020.50000000000
>> 568667.87500000000      4828016.50000000000
>> 569476.87500000000      4828013.50000000000
>> 570285.87500000000      4828011.50000000000
>> 567864.87500000000      4828002.50000000000
>> 567061.87500000000      4827988.50000000000
>> 566254.87500000000      4827979.50000000000
>> 565447.87500000000      4827970.50000000000
>> 564631.87500000000      4827965.50000000000
>> 563815.87500000000      4827961.50000000000
>> 563019.87500000000      4827945.50000000000
>> 562224.87500000000      4827929.50000000000
>> 561427.87500000000      4827924.50000000000
>> 560630.87500000000      4827919.50000000000
>> 559821.87500000000      4827917.50000000000
>> 559013.87500000000      4827916.50000000000
>> 558210.87500000000      4827911.50000000000
>> 557407.87500000000      4827906.50000000000
>> 555790.87500000000      4827905.50000000000
>> 556598.87500000000      4827905.50000000000
>> 554953.87500000000      4827901.50000000000
>> 554116.87500000000      4827897.50000000000
>> 553314.87500000000      4827892.50000000000
>> 552513.87500000000      4827888.50000000000
>> 551706.87500000000      4827880.50000000000
>> 550899.87500000000      4827872.50000000000
>> 550096.81250000000      4827864.50000000000
>> 549293.81250000000      4827857.50000000000
>> 548486.81250000000      4827849.50000000000
>> 547680.81250000000      4827842.50000000000
>> 546868.81250000000      4827840.50000000000
>> 546056.81250000000      4827839.50000000000
>> 545247.81250000000      4827823.50000000000
>> 544439.81250000000      4827808.50000000000
>> 581547.93750000000      4827342.50000000000
>> 579928.93750000000      4827326.50000000000
>> 578311.93750000000      4827303.50000000000
>> 576700.93750000000      4827288.50000000000
>> 575097.87500000000      4827262.50000000000
>> 573503.87500000000      4827255.50000000000
>> 571901.87500000000      4827229.50000000000
>> 570293.87500000000      4827212.50000000000
>> 568683.87500000000      4827208.50000000000
>> 567078.87500000000      4827184.50000000000
>> 565470.87500000000      4827164.50000000000
>> 563834.87500000000      4827155.50000000000
>> 562230.87500000000      4827134.50000000000
>> 560626.87500000000      4827118.50000000000
>> 559019.87500000000      4827109.50000000000
>> 557407.87500000000      4827100.50000000000
>> 555792.87500000000      4827098.50000000000
>> 554127.87500000000      4827090.50000000000
>> 552523.81250000000      4827076.50000000000
>> 550906.81250000000      4827065.50000000000
>> 549302.81250000000      4827052.50000000000
>> 547691.81250000000      4827037.50000000000
>> 546074.81250000000      4827034.50000000000
>> 581561.93750000000      4826547.50000000000
>> 580752.87500000000      4826537.50000000000
>> 579944.87500000000      4826527.50000000000
>> 579135.87500000000      4826516.50000000000
>> 578327.87500000000      4826506.50000000000
>> 577520.87500000000      4826498.50000000000
>> 576714.87500000000      4826490.50000000000
>> 575915.87500000000      4826475.50000000000
>> 575117.87500000000      4826460.50000000000
>> 574316.87500000000      4826455.50000000000
>> 573515.87500000000      4826450.50000000000
>> 572714.87500000000      4826439.50000000000
>> 571913.87500000000      4826429.50000000000
>> 571107.87500000000      4826421.50000000000
>> 570301.87500000000      4826413.50000000000
>> 569500.87500000000      4826406.50000000000
>> 568699.87500000000      4826400.50000000000
>> 567897.87500000000      4826390.50000000000
>> 567096.87500000000      4826381.50000000000
>> 566295.87500000000      4826370.50000000000
>> 565494.87500000000      4826359.50000000000
>> 564673.87500000000      4826354.50000000000
>> 563853.87500000000      4826350.50000000000
>> 563044.87500000000      4826344.50000000000
>> 562236.87500000000      4826339.50000000000
>> 561429.87500000000      4826328.50000000000
>> 560623.87500000000      4826317.50000000000
>> 559824.87500000000      4826310.50000000000
>> 559026.87500000000      4826303.50000000000
>> 558217.87500000000      4826299.50000000000
>> 557408.87500000000      4826295.50000000000
>> 556601.87500000000      4826293.50000000000
>> 555794.87500000000      4826291.50000000000
>> 554966.81250000000      4826287.50000000000
>> 554138.81250000000      4826284.50000000000
>> 553335.81250000000      4826274.50000000000
>> 552533.81250000000      4826265.50000000000
>> 551723.81250000000      4826261.50000000000
>> 550913.81250000000      4826258.50000000000
>> 550112.81250000000      4826253.50000000000
>> 549311.81250000000      4826248.50000000000
>> 548506.81250000000      4826240.50000000000
>> 547702.81250000000      4826232.50000000000
>> 546897.81250000000      4826230.50000000000
>> 546092.81250000000      4826229.50000000000
>> 545271.81250000000      4826211.50000000000
>> 544451.81250000000      4826193.50000000000
>> 581563.87500000000      4825740.50000000000
>> 579949.87500000000      4825722.50000000000
>> 578340.87500000000      4825707.50000000000
>> 576725.87500000000      4825683.50000000000
>> 575118.87500000000      4825665.50000000000
>> 573522.87500000000      4825647.50000000000
>> 571918.87500000000      4825633.50000000000
>> 570310.87500000000      4825621.50000000000
>> 568704.87500000000      4825603.50000000000
>> 567101.87500000000      4825596.50000000000
>> 565496.87500000000      4825581.50000000000
>> 563853.87500000000      4825546.50000000000
>> 562244.87500000000      4825530.50000000000
>> 560635.87500000000      4825522.50000000000
>> 559024.87500000000      4825504.50000000000
>> 557409.81250000000      4825499.50000000000
>> 555792.81250000000      4825488.50000000000
>> 554144.81250000000      4825480.50000000000
>> 552537.81250000000      4825455.50000000000
>> 549324.81250000000      4825451.50000000000
>> 546093.81250000000      4825424.50000000000
>> 547705.81250000000      4825420.50000000000
>> 581566.87500000000      4824933.50000000000
>> 580760.87500000000      4824925.50000000000
>> 579954.87500000000      4824918.50000000000
>> 579153.87500000000      4824913.50000000000
>> 578353.87500000000      4824909.50000000000
>> 577544.87500000000      4824892.50000000000
>> 576736.87500000000      4824876.50000000000
>> 575928.87500000000      4824873.50000000000
>> 575120.87500000000      4824870.50000000000
>> 574325.87500000000      4824857.50000000000
>> 573530.87500000000      4824844.50000000000
>> 572726.87500000000      4824840.50000000000
>> 571923.87500000000      4824837.50000000000
>> 571121.87500000000      4824833.50000000000
>> 570319.87500000000      4824829.50000000000
>> 569514.87500000000      4824818.50000000000
>> 567106.87500000000      4824812.50000000000
>> 567907.87500000000      4824809.50000000000
>> 566302.87500000000      4824808.50000000000
>> 568709.87500000000      4824807.50000000000
>> 565499.87500000000      4824804.50000000000
>> 564676.87500000000      4824773.50000000000
>> 563854.87500000000      4824743.50000000000
>> 563053.87500000000      4824732.50000000000
>> 560648.87500000000      4824727.50000000000
>> 561450.87500000000      4824724.50000000000
>> 562252.87500000000      4824721.50000000000
>> 559835.81250000000      4824716.50000000000
>> 559023.81250000000      4824705.50000000000
>> 557410.81250000000      4824704.50000000000
>> 558216.81250000000      4824704.50000000000
>> 556600.81250000000      4824694.50000000000
>> 555791.81250000000      4824685.50000000000
>> 554971.81250000000      4824681.50000000000
>> 554151.81250000000      4824677.50000000000
>> 553346.81250000000      4824661.50000000000
>> 549337.81250000000      4824655.50000000000
>> 552541.81250000000      4824645.50000000000
>> 548522.81250000000      4824632.50000000000
>> 546095.81250000000      4824619.50000000000
>> 546901.81250000000      4824614.50000000000
>> 547708.81250000000      4824609.50000000000
>> 581576.87500000000      4824131.50000000000
>> 579957.87500000000      4824114.50000000000
>> 578352.87500000000      4824104.50000000000
>> 576744.87500000000      4824073.50000000000
>> 575129.87500000000      4824064.50000000000
>> 573538.87500000000      4824041.50000000000
>> 571927.87500000000      4824036.50000000000
>> 570323.87500000000      4824023.50000000000
>> 567100.87500000000      4824009.50000000000
>> 568715.87500000000      4824005.50000000000
>> 565496.81250000000      4823998.50000000000
>> 563861.81250000000      4823935.50000000000
>> 562256.81250000000      4823919.50000000000
>> 560644.81250000000      4823918.50000000000
>> 557409.81250000000      4823902.50000000000
>> 559026.81250000000      4823899.50000000000
>> 581587.87500000000      4823329.5000
>
> ...
>
> [Messaggio troncato]



-- 
Antonio, Fabio Di Narzo
Ph.D. student at
Department of Statistical Sciences
University of Bologna, Italy



------------------------------

Message: 77
Date: Wed, 28 Jan 2009 16:18:41 -0500
From: jim holtman <jholtman at gmail.com>
Subject: Re: [R] Text data
To: Alice Lin <alice.ly at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<644e1f320901281318m7550429y763caa0c96824316 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

This will sort on those characters:

> x <- readLines(textConnection("26M_AN_C.bmp
+ 22M_AN_C.bmp
+ 20M_HA_O.bmp
+ 20M_AN_C.bmp
+ 26M_HA_O.bmp
+ 22M_HA_O.bmp
+ 31M_AN_C.bmp
+ 38M_HA_O.bmp"))
> closeAllConnections()
> # pick off characters between "_"
> sortKey <- sub(".*_(.+)_.*", "\\1", x)
> sortKey
[1] "AN" "AN" "HA" "AN" "HA" "HA" "AN" "HA"
> # output sorted list
> x[order(sortKey)]
[1] "26M_AN_C.bmp" "22M_AN_C.bmp" "20M_AN_C.bmp" "31M_AN_C.bmp"
"20M_HA_O.bmp" "26M_HA_O.bmp" "22M_HA_O.bmp" "38M_HA_O.bmp"
>
>


On Wed, Jan 28, 2009 at 3:37 PM, Alice Lin <alice.ly at gmail.com> wrote:
>
> i have a data column of text entries:
> 26M_AN_C.bmp
> 22M_AN_C.bmp
> 20M_HA_O.bmp
> 20M_AN_C.bmp
> 26M_HA_O.bmp
> 22M_HA_O.bmp
> 31M_AN_C.bmp
> 38M_HA_O.bmp
> .
> .
> .
> .
>
>
> And I would like to sort by the middle tag: AN, HA, etc.
> Is there a way to parse text data in R?
>
> In excel, I would have used the "left" and "right" function to cut out just
> the middle two letters out and put into another column to sort by.
>
> Thanks!
>
> --
> View this message in context: http://www.nabble.com/Text-data-tp21714334p21714334.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?



------------------------------

Message: 78
Date: Wed, 28 Jan 2009 17:23:35 -0400
From: Mike Lawrence <mike at thatmike.com>
Subject: Re: [R] Help with normal distribution in random samples...
To: Sea Captain 1779 <dbowen at measinc.com>
Cc: r-help at r-project.org
Message-ID:
	<8ae7763a0901281323u3e87e032gc8ceff5673246c8a at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

?rnorm

On Wed, Jan 28, 2009 at 4:04 PM, Sea Captain 1779 <dbowen at measinc.com> wrote:
>
> Hi!!!
>
> First time 'R' user looking for a little assistance.  Here is what I have so
> far:
>
> practice1 = matrix ((runif(5000, min =0, max = 12)), 100)
>
> which is creating 50 samples, for 100 cases, distributed between 0-12.  What
> I would like is to be able to set the mean and SD so that the data is
> normally distributed around lets say 7.  Any help I can get with achieving
[[elided Yahoo spam]]
>
> -Dan
> --
> View this message in context: http://www.nabble.com/Help-with-normal-distribution-in-random-samples...-tp21713636p21713636.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Mike Lawrence
Graduate Student
Department of Psychology
Dalhousie University
www.thatmike.com

Looking to arrange a meeting? Check my public calendar:
http://www.thatmike.com/mikes-public-calendar

~ Certainty is folly... I think. ~



------------------------------

Message: 79
Date: Wed, 28 Jan 2009 16:26:58 -0500
From: "Nutter, Benjamin" <NutterB at ccf.org>
Subject: Re: [R] Text data
To: "Alice Lin" <alice.ly at gmail.com>, r-help at r-project.org
Message-ID:
	<07773E68C32A644CA47651463E79E5C202476EDF at CCHSCLEXMB68.cc.ad.cchs.net>
Content-Type: text/plain; charset=us-ascii

Jim's solution is more elegant than the following (and probably more
efficient) but you could also try the following (This let's you sort by
AN/HN, and then by the number at the start of the filename):

> text <- c( "26M_AN_C.bmp", "22M_AN_C.bmp", "20M_HA_O.bmp",
             "20M_AN_C.bmp", "26M_HA_O.bmp", "22M_HA_O.bmp",
             "31M_AN_C.bmp", "38M_HA_O.bmp")

> split <- do.call("rbind",strsplit(text,"_"))

> o <- order(split[,2],split[,1],split[,3])

> text[o]

[1] 20M_AN_C.bmp" "22M_AN_C.bmp" "26M_AN_C.bmp" "31M_AN_C.bmp"
"20M_HA_O.bmp"
[6] "22M_HA_O.bmp" "26M_HA_O.bmp" "38M_HA_O.bmp"

-----Original Message-----
From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
On Behalf Of Alice Lin
Sent: Wednesday, January 28, 2009 3:38 PM
To: r-help at r-project.org
Subject: [R] Text data


i have a data column of text entries:
26M_AN_C.bmp
22M_AN_C.bmp
20M_HA_O.bmp
20M_AN_C.bmp
26M_HA_O.bmp
22M_HA_O.bmp
31M_AN_C.bmp
38M_HA_O.bmp
.
.
.
.


And I would like to sort by the middle tag: AN, HA, etc.
Is there a way to parse text data in R? 

In excel, I would have used the "left" and "right" function to cut out
just
the middle two letters out and put into another column to sort by. 

Thanks!

-- 
View this message in context:
http://www.nabble.com/Text-data-tp21714334p21714334.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


===================================

P Please consider the environment before printing this e-mail

Cleveland Clinic is ranked one of the top hospitals
in America by U.S. News & World Report (2008).  
Visit us online at http://www.clevelandclinic.org for
a complete listing of our services, staff and
locations.


Confidentiality Note:  This message is intended for use\...{{dropped:13}}



------------------------------

Message: 80
Date: Wed, 28 Jan 2009 13:26:55 -0800
From: "Nordlund, Dan (DSHS/RDA)" <NordlDJ at dshs.wa.gov>
Subject: Re: [R] Help with normal distribution in random samples...
To: "Sea Captain 1779" <dbowen at measinc.com>, r-help at r-project.org
Message-ID:
	<941871A13165C2418EC144ACB212BDB0BEB2A5 at dshsmxoly1504g.dshs.wa.lcl>
Content-Type: text/plain; charset=iso-8859-1

> -----Original Message-----
> From: r-help-bounces at r-project.org 
> [mailto:r-help-bounces at r-project.org] On Behalf Of Sea Captain 1779
> Sent: Wednesday, January 28, 2009 12:04 PM
> To: r-help at r-project.org
> Subject: [R] Help with normal distribution in random samples...
> 
> 
> Hi!!!
> 
> First time 'R' user looking for a little assistance.  Here is 
> what I have so
> far:
> 
> practice1 = matrix ((runif(5000, min =0, max = 12)), 100)
> 
> which is creating 50 samples, for 100 cases, distributed 
> between 0-12.  What
> I would like is to be able to set the mean and SD so that the data is
> normally distributed around lets say 7.  Any help I can get 
> with achieving
[[elided Yahoo spam]]
> 
> -Dan

Use rnorm() instead of runif().

Hope this is helpful,

A different Dan

Daniel J. Nordlund
Washington State Department of Social and Health Services
Planning, Performance, and Accountability
Research and Data Analysis Division
Olympia, WA  98504-5204





------------------------------

Message: 81
Date: Wed, 28 Jan 2009 15:32:13 -0600
From: hadley wickham <h.wickham at gmail.com>
Subject: Re: [R] Changing histogram stack in qplot

Cc: R-help at r-project.org
Message-ID:
	<f8e6ff050901281332r4aeee3b7jc7b8398791f3c57b at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Hi Jason,

You'll need scale_fill_manual(values = c(low = "blue", middle =
"black", high = "red"))

See http://had.co.nz/ggplot2/scale_manual.html for more examples/details.

Regards,

Hadley


wrote:
> I've been using qplot pretty successfully to generate stacked histograms.  However, it appears that I need to tweak the colors a little.
>
> I've got three temperature variables (characters not numeric) and I need to change from the default qplot colors to the following:
> Low = Blue
> Middle = black
> High = Red
>
> Here is pseudo code of what I have currently:qplot(Run, data = TestData, breaks = hist_breaks, ,
>           fill = TestData$Temperature,
>           main = short_title) +
>           scale_x_continuous("Run, Radians") + scale_y_continuous("Frequency") +
>           scale_fill_discrete("Temperature")
>
> Thanks for any advice and insights.
>
>
>
>
>
>        [[alternative HTML version deleted]]
>
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>



-- 
http://had.co.nz/



------------------------------

Message: 82
Date: Wed, 28 Jan 2009 16:33:48 -0500
From: Ubuntu Diego <ubuntu.diego at gmail.com>
Subject: Re: [R] Memory issue?
To: "r-help at r-project.org" <r-help at r-project.org>
Message-ID: <1233178428.12820.38.camel at Halley>
Content-Type: text/plain

I had similar issues with memory occupancy. You should explicitly call
gc() to call the garbage collector (free memory routine) after you do
rm() of the big objects. 

D.



------------------------------

Message: 83
Date: Wed, 28 Jan 2009 13:08:33 -0800 (PST)
From: pfc_ivan <pfc_ivan at hotmail.com>
Subject: Re: [R] Newbie Question About Histograms
To: r-help at r-project.org
Message-ID: <21714995.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii



Also I forgot to say that The Y-axis values for each YearC would be the mean
value of all the Lenghts that happen in that YearC. Basically I cant figure
out how to put the mean values of Lengths for each YearC on Y axis. 

Thanks in advance!
-- 
View this message in context: http://www.nabble.com/Newbie-Question-About-Histograms-tp21713626p21714995.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 84
Date: Wed, 28 Jan 2009 13:14:48 -0800 (PST)
From: Cl?ment D <dudouet at gmail.com>
Subject: Re: [R] rproxy.dll
To: r-help at r-project.org
Message-ID: <21715182.post at talk.nabble.com>
Content-Type: text/plain; charset=UTF-8




Duncan Murdoch-2 wrote:
> 
> On 25/10/2008 1:01 PM, Murray Eisenberg wrote:
>> Is rproxy.dll supposed to be installed as part of a Windows binary 
>> installation of R?  And the installer put it in R's bin subdirectory?
>> 
>> If so, it seems to be missing from the R-2.8.0 patched, 2008-10-25 
>> (r46779), that I installed.
>> 
> 
> See the CHANGES file:
> 
>      o	Rproxy.dll is no longer part of the R distribution: it has
> 	been replaced by CRAN package rscproxy.
> 
> Duncan Murdoch
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
> 
> 

Hi!

Since rproxy.dll has been replaced by rscproxy, how can I use the (R)-D COM
dll?

Cheers!

Cl?ment D
-- 
View this message in context: http://www.nabble.com/rproxy.dll-tp20165941p21715182.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 85
Date: Wed, 28 Jan 2009 13:59:03 -0800 (PST)
From: SnowManPaddington <wiwiana at gmail.com>
Subject: Re: [R] for/if loop
To: r-help at r-project.org
Message-ID: <21715928.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii


Hi ya, I've revised the code (and finally know what I m doing.. :-D)

The good news is.. I dont get any error message, but the bad news is the
following optim generate no results. I still think there is something to do
[[elided Yahoo spam]]



pp=1
rr=1

for (ii in 1:n){
	if (!(panel[ii] == pp)){
		hll[pp,1] == sum(lselb1[rr:ii-1])
		hll[pp,2] == sum(lselb2[rr:ii-1])
		rr==ii
		pp==pp+1
		}
	
	if (ii==n){
		hll[pp,1] == sum(lselb1[rr:ii])
		hll[pp,2] == sum(lselb2[rr:ii])
		rr==ii
		pp==pp+1
		}
	ii=ii+1
}





pp=1
rr=1

for (ii in 1:n){
	if (!(panel[ii] == pp)){
		hll[pp,1] == sum(lselb1[rr:ii-1])
		hll[pp,2] == sum(lselb2[rr:ii-1])
		rr==ii
		pp==pp+1
		}
	
	if (ii==n){
		hll[pp,1] == sum(lselb1[rr:ii])
		hll[pp,2] == sum(lselb2[rr:ii])
		rr==ii
		pp==pp+1
		}
	ii=ii+1
}





SnowManPaddington wrote:
> 
> Hi, it's my first time to write a loop with R for my homework. This loop
> is part of the function. I wanna assign values for hll according to panel
> [ii,1]=pp. I didn't get any error message in this part. but then when I
> further calculate another stuff with hll, the function can't return. I
> think it must be some problem in my loop. Probably something stupid or
> easy. But I tried to look for previous posts in forum and read R language
[[elided Yahoo spam]]
> 
> 
> 
> for (ii in 1:100){
> 	for (pp in 1:pp+1){
> 		for (rr in 1:rr+1){
> 			if (panel[ii,1]!=pp)
> 			{
> 			hll(pp,1)=ColSums(lselb1(rr:ii-1,1))
> 			hll(pp,2)=ColSums(lselb2(rr:ii-1,1)) 
> 			rr=ii
> 			pp=pp+1
> 			}
> 			else
> 			{
> 			hll(pp,1)=ColSums(lselb1(rr:ii,1))
> 			hll(pp,2)=ColSums(lselb2(rr:ii,1)) 
> 			rr=ii
> 			pp=pp+1}
> 			}
> 			}}}
> 
> 
> in fact I have the corresponding Gauss code here. But I really don't know
> how to write such loop in R.
> 
> rr=1;
> ii=1;
> pp=1;
> do until ii==n+1;
> 	if pan[ii,1] ne pp;
> 		hll[pp,1]=sumc(lselb1[rr:ii-1,1]);
> 		hll[pp,2]=sumc(lselb2[rr:ii-1,1]);
> 		rr=ii;
> 		pp=pp+1;
> 	endif;
> 	if ii==n;
> 		hll[pp,1]=sumc(lselb1[rr:ii,1]);
> 		hll[pp,2]=sumc(lselb2[rr:ii,1]);
> 		rr=ii;
> 		pp=pp+1;
> 	endif;
> 	ii=ii+1;
> endo;
> 
> 

-- 
View this message in context: http://www.nabble.com/for-if-loop-tp21701496p21715928.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 86
Date: Wed, 28 Jan 2009 23:24:12 +0100
From: Eik Vettorazzi <E.Vettorazzi at uke.uni-hamburg.de>
Subject: Re: [R] Newbie Question About Histograms
To: pfc_ivan <pfc_ivan at hotmail.com>
Cc: r-help at r-project.org
Message-ID: <4980DB0C.10307 at uke.uni-hamburg.de>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

How about

 > dta<-read.table("clipboard",header=T)
 > means<-aggregate(dta$Length,by=list(YearC=dta$YearC),FUN=mean)
 > barplot(means[,2],names.arg=means[,1])

you may have a look at ?barplot to see (lots of) options for fine tuning 
the plot.

hth.

pfc_ivan schrieb:
> Also I forgot to say that The Y-axis values for each YearC would be the mean
> value of all the Lenghts that happen in that YearC. Basically I cant figure
> out how to put the mean values of Lengths for each YearC on Y axis. 
>
> Thanks in advance!
>



------------------------------

Message: 87
Date: Thu, 29 Jan 2009 09:28:42 +1100
From: Gad Abraham <gabraham at csse.unimelb.edu.au>
Subject: Re: [R] Using R in a web application
To: Will Glass-Husain <wglasshusain at gmail.com>
Cc: r-help at stat.math.ethz.ch
Message-ID: <4980DC1A.8000006 at csse.unimelb.edu.au>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Will Glass-Husain wrote:
> Hi,
> 
> I want to use R to do user-submitted jobs in a (java-based) webapp.
> Specifically, I want
> * users to upload R scripts
> * run the R job on user data
> * save the results to database
> 
> I'm concerned about sandbox issues.
> * Is it possible to disable file read/write capability?
> * Can I prevent the user from loading packages (e.g. the database package).
> 
> * Can I have users work on separate data sets while preventing access to
> other user's data?
> 
> I'm trying to see if there's a secure way to let users upload their R
> scripts and run on my server.

Have a look at Rserve (http://www.rforge.net/Rserve), I've never used it 
but it might be useful to you.


-- 
Gad Abraham
Dept. CSSE and NICTA
The University of Melbourne
Parkville 3010, Victoria, Australia
email: gabraham at csse.unimelb.edu.au
web: http://www.csse.unimelb.edu.au/~gabraham



------------------------------

Message: 88
Date: Wed, 28 Jan 2009 14:37:15 -0800 (PST)

Subject: Re: [R] Changing histogram stack in qplot
To: R-help at r-project.org
Message-ID: <370998.28760.qm at web56006.mail.re3.yahoo.com>
Content-Type: text/plain

Worked beautifully!  Thank you again for providing such a flexible package.  


--- On Wed, 1/28/09, hadley wickham <h.wickham at gmail.com> wrote:

From: hadley wickham <h.wickham at gmail.com>
Subject: Re: [R] Changing histogram stack in qplot

Cc: R-help at r-project.org
Date: Wednesday, January 28, 2009, 3:32 PM

Hi Jason,

You'll need scale_fill_manual(values = c(low = "blue", middle =
"black", high = "red"))

See http://had.co.nz/ggplot2/scale_manual.html for more examples/details.

Regards,

Hadley


wrote:
> I've been using qplot pretty successfully to generate stacked
histograms.  However, it appears that I need to tweak the colors a little.
>
> I've got three temperature variables (characters not numeric) and I
need to change from the default qplot colors to the following:
> Low = Blue
> Middle = black
> High = Red
>
> Here is pseudo code of what I have currently:qplot(Run, data = TestData,
breaks = hist_breaks, ,
>           fill = TestData$Temperature,
>           main = short_title) +
>           scale_x_continuous("Run, Radians") +
scale_y_continuous("Frequency") +
>           scale_fill_discrete("Temperature")
>
> Thanks for any advice and insights.
>
>
>
>
>
>        [[alternative HTML version deleted]]
>
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>



-- 
http://had.co.nz/



      
	[[alternative HTML version deleted]]



------------------------------

Message: 89
Date: Wed, 28 Jan 2009 16:39:06 -0600
From: Joseph Magagnoli <jcm331 at gmail.com>
Subject: [R]  Dynamic random effects model
To: r-help at r-project.org
Message-ID:
	<9729f0ae0901281439h784649d2o3d6d29ec9f0c7794 at mail.gmail.com>
Content-Type: text/plain

All R experts,
How do I fit a dynamic Random effects model with a binary dependent variable
in R
Thanks
JCM

	[[alternative HTML version deleted]]



------------------------------

Message: 90
Date: Wed, 28 Jan 2009 16:41:40 -0600
From: <davidr at rhotrading.com>
Subject: Re: [R] [SPAM] - Re:  for/if loop - Bayesian Filter detected
	spam
To: "SnowManPaddington" <wiwiana at gmail.com>, <r-help at r-project.org>
Message-ID:
	<F9F2A641C593D7408925574C05A7BE77022A612A at rhopost.rhotrading.com>
Content-Type: text/plain;	charset="us-ascii"

Well, maybe you are just bad at typing then ;-)

The lines rr==ii, pp==pp+1, etc. are not setting rr and pp but comparing
them.
Probably you want rr <- ii and pp <- pp+1, etc.
And the last line of your loop 'ii=ii+1' means that,
since the for statement is already incrementing ii,
you are incrementing it twice and skipping the even indices. Omit this
line probably.
You are also forgetting(?) the operator precedence in
sum(lselb1[rr:ii-1]) and similar lines.
Note that this is equivalent to sum(lselb1[(rr-1):(ii-1)]); is that what
you meant?
Or did you want sum(lselb1[rr:(ii-1)])?
You are changing some variables but not asking R to print anything as
far as I can see.
To see the results, ask R to print hll.

HTH,
-- David

-----Original Message-----
From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
On Behalf Of SnowManPaddington
Sent: Wednesday, January 28, 2009 3:59 PM
To: r-help at r-project.org
Subject: [SPAM] - Re: [R] for/if loop - Bayesian Filter detected spam


Hi ya, I've revised the code (and finally know what I m doing.. :-D)

The good news is.. I dont get any error message, but the bad news is the
following optim generate no results. I still think there is something to
do
[[elided Yahoo spam]]



pp=1
rr=1

for (ii in 1:n){
	if (!(panel[ii] == pp)){
		hll[pp,1] == sum(lselb1[rr:ii-1])
		hll[pp,2] == sum(lselb2[rr:ii-1])
		rr==ii
		pp==pp+1
		}
	
	if (ii==n){
		hll[pp,1] == sum(lselb1[rr:ii])
		hll[pp,2] == sum(lselb2[rr:ii])
		rr==ii
		pp==pp+1
		}
	ii=ii+1
}





pp=1
rr=1

for (ii in 1:n){
	if (!(panel[ii] == pp)){
		hll[pp,1] == sum(lselb1[rr:ii-1])
		hll[pp,2] == sum(lselb2[rr:ii-1])
		rr==ii
		pp==pp+1
		}
	
	if (ii==n){
		hll[pp,1] == sum(lselb1[rr:ii])
		hll[pp,2] == sum(lselb2[rr:ii])
		rr==ii
		pp==pp+1
		}
	ii=ii+1
}





SnowManPaddington wrote:
> 
> Hi, it's my first time to write a loop with R for my homework. This
loop
> is part of the function. I wanna assign values for hll according to
panel
> [ii,1]=pp. I didn't get any error message in this part. but then when
I
> further calculate another stuff with hll, the function can't return. I
> think it must be some problem in my loop. Probably something stupid or
> easy. But I tried to look for previous posts in forum and read R
language
[[elided Yahoo spam]]
> 
> 
> 
> for (ii in 1:100){
> 	for (pp in 1:pp+1){
> 		for (rr in 1:rr+1){
> 			if (panel[ii,1]!=pp)
> 			{
> 			hll(pp,1)=ColSums(lselb1(rr:ii-1,1))
> 			hll(pp,2)=ColSums(lselb2(rr:ii-1,1)) 
> 			rr=ii
> 			pp=pp+1
> 			}
> 			else
> 			{
> 			hll(pp,1)=ColSums(lselb1(rr:ii,1))
> 			hll(pp,2)=ColSums(lselb2(rr:ii,1)) 
> 			rr=ii
> 			pp=pp+1}
> 			}
> 			}}}
> 
> 
> in fact I have the corresponding Gauss code here. But I really don't
know
> how to write such loop in R.
> 
> rr=1;
> ii=1;
> pp=1;
> do until ii==n+1;
> 	if pan[ii,1] ne pp;
> 		hll[pp,1]=sumc(lselb1[rr:ii-1,1]);
> 		hll[pp,2]=sumc(lselb2[rr:ii-1,1]);
> 		rr=ii;
> 		pp=pp+1;
> 	endif;
> 	if ii==n;
> 		hll[pp,1]=sumc(lselb1[rr:ii,1]);
> 		hll[pp,2]=sumc(lselb2[rr:ii,1]);
> 		rr=ii;
> 		pp=pp+1;
> 	endif;
> 	ii=ii+1;
> endo;
> 
> 

-- 
View this message in context:
http://www.nabble.com/for-if-loop-tp21701496p21715928.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 91
Date: Wed, 28 Jan 2009 17:50:03 +0800
From: Wenxia Li <ringingfeeling at gmail.com>
Subject: [R] questions about histogram
To: r-help at r-project.org
Message-ID: <D05E2017-A927-4F62-A5A2-11C4CE9281F9 at gmail.com>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

Hi all,

I'm a new R user. I have the following information about a data set  
and how to make a histogram?
data             number of observations
0-2                     25
2-10                  10
10-100             10
100-1000          5

I tried barplot(height=...,width=...,...), the output looks right but  
the x-axis is missing. How to fix it?
Also can I use<hist> to draw it?

Thanks!

WX



------------------------------

Message: 92
Date: Wed, 28 Jan 2009 15:08:14 -0800
From: Henrik Bengtsson <hb at stat.berkeley.edu>
Subject: Re: [R] [SPAM] - Re: for/if loop - Bayesian Filter detected
	spam
To: davidr at rhotrading.com
Cc: r-help at r-project.org, SnowManPaddington <wiwiana at gmail.com>
Message-ID:
	<59d7961d0901281508w1f304b74r3c30c6b91ec03e93 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

On Wed, Jan 28, 2009 at 2:41 PM,  <davidr at rhotrading.com> wrote:
> Well, maybe you are just bad at typing then ;-)
>
> The lines rr==ii, pp==pp+1, etc. are not setting rr and pp but comparing
> them.
> Probably you want rr <- ii and pp <- pp+1, etc.
> And the last line of your loop 'ii=ii+1' means that,
> since the for statement is already incrementing ii,
> you are incrementing it twice and skipping the even indices. Omit this
> line probably.

That is actually not the case (because of the scoping rules for for(),
I think).  Example:

> for (ii in 1:5) { print(ii); ii <- ii + 1; }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Another "counter intuitive" (though it isn't) example:

for (ii in 1:3) {
  cat("Outer ii:",ii,"\n");
  for (ii in ii:3) {
    cat("  Inner ii:",ii,"\n");
  }
}

Outer ii: 1
  Inner ii: 1
  Inner ii: 2
  Inner ii: 3
Outer ii: 2
  Inner ii: 2
  Inner ii: 3
Outer ii: 3
  Inner ii: 3

My $.02

/Henrik

> You are also forgetting(?) the operator precedence in
> sum(lselb1[rr:ii-1]) and similar lines.
> Note that this is equivalent to sum(lselb1[(rr-1):(ii-1)]); is that what
> you meant?
> Or did you want sum(lselb1[rr:(ii-1)])?
> You are changing some variables but not asking R to print anything as
> far as I can see.
> To see the results, ask R to print hll.
>
> HTH,
> -- David
>
> -----Original Message-----
> From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org]
> On Behalf Of SnowManPaddington
> Sent: Wednesday, January 28, 2009 3:59 PM
> To: r-help at r-project.org
> Subject: [SPAM] - Re: [R] for/if loop - Bayesian Filter detected spam
>
>
> Hi ya, I've revised the code (and finally know what I m doing.. :-D)
>
> The good news is.. I dont get any error message, but the bad news is the
> following optim generate no results. I still think there is something to
> do
[[elided Yahoo spam]]
>
>
>
> pp=1
> rr=1
>
> for (ii in 1:n){
>        if (!(panel[ii] == pp)){
>                hll[pp,1] == sum(lselb1[rr:ii-1])
>                hll[pp,2] == sum(lselb2[rr:ii-1])
>                rr==ii
>                pp==pp+1
>                }
>
>        if (ii==n){
>                hll[pp,1] == sum(lselb1[rr:ii])
>                hll[pp,2] == sum(lselb2[rr:ii])
>                rr==ii
>                pp==pp+1
>                }
>        ii=ii+1
> }
>
>
>
>
>
> pp=1
> rr=1
>
> for (ii in 1:n){
>        if (!(panel[ii] == pp)){
>                hll[pp,1] == sum(lselb1[rr:ii-1])
>                hll[pp,2] == sum(lselb2[rr:ii-1])
>                rr==ii
>                pp==pp+1
>                }
>
>        if (ii==n){
>                hll[pp,1] == sum(lselb1[rr:ii])
>                hll[pp,2] == sum(lselb2[rr:ii])
>                rr==ii
>                pp==pp+1
>                }
>        ii=ii+1
> }
>
>
>
>
>
> SnowManPaddington wrote:
>>
>> Hi, it's my first time to write a loop with R for my homework. This
> loop
>> is part of the function. I wanna assign values for hll according to
> panel
>> [ii,1]=pp. I didn't get any error message in this part. but then when
> I
>> further calculate another stuff with hll, the function can't return. I
>> think it must be some problem in my loop. Probably something stupid or
>> easy. But I tried to look for previous posts in forum and read R
> language
[[elided Yahoo spam]]
>>
>>
>>
>> for (ii in 1:100){
>>       for (pp in 1:pp+1){
>>               for (rr in 1:rr+1){
>>                       if (panel[ii,1]!=pp)
>>                       {
>>                       hll(pp,1)=ColSums(lselb1(rr:ii-1,1))
>>                       hll(pp,2)=ColSums(lselb2(rr:ii-1,1))
>>                       rr=ii
>>                       pp=pp+1
>>                       }
>>                       else
>>                       {
>>                       hll(pp,1)=ColSums(lselb1(rr:ii,1))
>>                       hll(pp,2)=ColSums(lselb2(rr:ii,1))
>>                       rr=ii
>>                       pp=pp+1}
>>                       }
>>                       }}}
>>
>>
>> in fact I have the corresponding Gauss code here. But I really don't
> know
>> how to write such loop in R.
>>
>> rr=1;
>> ii=1;
>> pp=1;
>> do until ii==n+1;
>>       if pan[ii,1] ne pp;
>>               hll[pp,1]=sumc(lselb1[rr:ii-1,1]);
>>               hll[pp,2]=sumc(lselb2[rr:ii-1,1]);
>>               rr=ii;
>>               pp=pp+1;
>>       endif;
>>       if ii==n;
>>               hll[pp,1]=sumc(lselb1[rr:ii,1]);
>>               hll[pp,2]=sumc(lselb2[rr:ii,1]);
>>               rr=ii;
>>               pp=pp+1;
>>       endif;
>>       ii=ii+1;
>> endo;
>>
>>
>
> --
> View this message in context:
> http://www.nabble.com/for-if-loop-tp21701496p21715928.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



------------------------------

Message: 93
Date: Wed, 28 Jan 2009 18:08:53 -0500
From: jim holtman <jholtman at gmail.com>
Subject: Re: [R] questions about histogram
To: Wenxia Li <ringingfeeling at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<644e1f320901281508t7bc7d8b2i7314b11d1da76e17 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Try this:

> x <- read.table(textConnection("0-2                     25
+ 2-10                  10
+ 10-100             10
+ 100-1000          5"))
>
> x
        V1 V2
1      0-2 25
2     2-10 10
3   10-100 10
4 100-1000  5
> ?barplot
> x <- read.table(textConnection("0-2                     25
+ 2-10                  10
+ 10-100             10
+ 100-1000          5"))
> barplot(x$V2, names.arg=x$V1)
>



On Wed, Jan 28, 2009 at 4:50 AM, Wenxia Li <ringingfeeling at gmail.com> wrote:
> Hi all,
>
> I'm a new R user. I have the following information about a data set and how
> to make a histogram?
> data             number of observations
> 0-2                     25
> 2-10                  10
> 10-100             10
> 100-1000          5
>
> I tried barplot(height=...,width=...,...), the output looks right but the
> x-axis is missing. How to fix it?
> Also can I use<hist> to draw it?
>
> Thanks!
>
> WX
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?



------------------------------

Message: 94
Date: Wed, 28 Jan 2009 18:24:43 +0800
From: Wenxia Li <ringingfeeling at gmail.com>
Subject: Re: [R] questions about histogram
To: r-help at r-project.org
Message-ID: <9AA09DFB-A859-4ECA-B13D-BB329DF696FB at gmail.com>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

it's a frequency histogram. The total area of the bars is 1, and the  
area of each bar represents its frequency, i.e.  
25/50,10/50,10/50,5/50, respectively. And the width of the bars are  
different.

On Jan 28, 2009, at 5:50 PM, Wenxia Li wrote:

> Hi all,
>
> I'm a new R user. I have the following information about a data set  
> and how to make a histogram?
> data             number of observations
> 0-2                     25
> 2-10                  10
> 10-100             10
> 100-1000          5
>
> I tried barplot(height=...,width=...,...), the output looks right  
> but the x-axis is missing. How to fix it?
> Also can I use<hist> to draw it?
>
> Thanks!
>
> WX
>
>



------------------------------

Message: 95
Date: Wed, 28 Jan 2009 18:31:12 -0500
From: Jorge Ivan Velez <jorgeivanvelez at gmail.com>
Subject: Re: [R] questions about histogram
To: Wenxia Li <ringingfeeling at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<317737de0901281531n606d2484we61f1ff628c8747 at mail.gmail.com>
Content-Type: text/plain

Dear Wenxia,
Take a look at this post:

http://www.nabble.com/Histogram-for-grouped-data-in-R-to21624806.html#a21624806


HTH,

Jorge


On Wed, Jan 28, 2009 at 4:50 AM, Wenxia Li <ringingfeeling at gmail.com> wrote:

> Hi all,
>
> I'm a new R user. I have the following information about a data set and how
> to make a histogram?
> data             number of observations
> 0-2                     25
> 2-10                  10
> 10-100             10
> 100-1000          5
>
> I tried barplot(height=...,width=...,...), the output looks right but the
> x-axis is missing. How to fix it?
> Also can I use<hist> to draw it?
>
> Thanks!
>
> WX
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

	[[alternative HTML version deleted]]



------------------------------

Message: 96
Date: Wed, 28 Jan 2009 21:30:04 -0500
From: Jorge Ivan Velez <jorgeivanvelez at gmail.com>
Subject: Re: [R] glm binomial loglog (NOT cloglog) link
To: William Simpson <william.a.simpson at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<317737de0901281830o468390b9occ3745a48c8cd268 at mail.gmail.com>
Content-Type: text/plain

Dear Bill,
Perhaps the "cloglog" function in the "VGAM" package might be useful for
you.

HTH,

Jorge


On Fri, Jan 23, 2009 at 11:32 AM, William Simpson <
william.a.simpson at gmail.com> wrote:

> I would like to do an R glm() with
> family = binomial(link="loglog")
>
> Right now, the cloglog link exists, which is nice when the data have a
> heavy tail to the left. I have the opposite case and the loglog link
> is what I need. Can someone suggest how to add the loglog link onto
> glm()? It would be lovely to have it there by default, and it
> certainly makes sense to have the two opposite cases cloglog and
> loglog.
>
> Thanks for any help.
>
> Bill
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

	[[alternative HTML version deleted]]



------------------------------

Message: 97
Date: Thu, 29 Jan 2009 02:31:18 +0000
From: Mark Wardle <mark at wardle.org>
Subject: Re: [R] Faced Problems with RODBC package 1.2-5 and 1.2-4 for
	windows
To: Nikhil Bhide <nikhil.bhide at tcs.com>
Cc: r-help at r-project.org
Message-ID:
	<b59a37130901281831m7fe573eby34b789e4f877168b at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

You need to include much more information.

Try creating a reproducible example - you may find the answer in the
process of doing this.

You may find the posting guide for the mailing list to be helpful -
you've had no replies because you haven't explained your problem well
enough.

Mark

2009/1/28 Nikhil Bhide <nikhil.bhide at tcs.com>:
> Hi,
>
>        I am facing problems with RODBC package 1.2-5 and 1.2-4  built for
> windows. I am using R  2.8.1 version.
>        I faced some problems when I was trying to execute sql procedure
> from R  with exec/execute statement .
>
>        Stored procedure contains code/statements :
>        1) Call to another procedure (R calls one procedure which itself
> calls another procedure)
>        2) Iteration (while loop)
>                   I created stored procedure in which I used while loop
> and while loop contains two insert statements.I executed procedure from R.
> I found that expected results are not matching with the   results I got.
> Also results are not consistent.
>        3) SET QUOTED_IDENTIFIER OFF statement
>
> Please give me a solution
>
> regards,
> Nikhil Ashok Bhide
> Cell:- +919604848030
> Mailto: nikhil.bhide at tcs.com
> Website: http://www.tcs.com
> ____________________________________________
> Experience certainty.   IT Services
>                        Business Solutions
>                        Outsourcing
> ____________________________________________
> ForwardSourceID:NT00001B0E
> =====-----=====-----=====
> Notice: The information contained in this e-mail
> message and/or attachments to it may contain
> confidential or privileged information. If you are
> not the intended recipient, any dissemination, use,
> review, distribution, printing or copying of the
> information contained in this e-mail message
> and/or attachments to it are strictly prohibited. If
> you have received this communication in error,
> please notify us by reply e-mail or telephone and
> immediately and permanently delete the message
> and any attachments. Thank you
>
>
>
>        [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>
> ______________________________________________________________________
> This email has been scanned by the MessageLabs Email Security System.
> For more information please visit http://www.messagelabs.com/email
> ______________________________________________________________________
>



-- 
Dr. Mark Wardle
Specialist registrar, Neurology
Cardiff, UK



------------------------------

Message: 98
Date: Wed, 28 Jan 2009 18:56:09 -0800 (PST)
From: "cameron.bracken" <cameron.bracken at gmail.com>
Subject: Re: [R] using Sweave with a master file that has several
	iputted .tex files
To: r-help at r-project.org
Message-ID: <21719963.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii




Mark Wardle wrote:
> 
> Using make means a "build" for a single chapter is cached unless the
> source file
> changes and so one can see the results of changes to one source file
> almost immediately.
> 

The pgfSweave package is specifically designed for speeding up the
compilation time in large documents.  It is still in development (not on
CRAN) but might be worth checking out:

https://www.rforge.net/pgfSweave/

-Cameron Bracken
-- 
View this message in context: http://www.nabble.com/using-Sweave-with-a-master-file-that-has-several-iputted-.tex-files-tp21690580p21719963.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 99
Date: Wed, 28 Jan 2009 21:01:56 -0600
From: Bomee Park <bombom at stanford.edu>
Subject: [R]  standard error of logit parameters
To: r-help at R-project.org
Message-ID: <FD57ADE8-5658-4C1F-BD41-93454A60C0DF at stanford.edu>
Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes

Hi everyone.

I am now estimating the parameters for a logit model, and trying to  
get the estimates by laximizing the log_likelihood.
The nlm function works nicely for maximizing the -(log_likelihood) and  
returns the parameter estimates that minimize the static, and the  
gradients also, but don't have any clue how I can get the standard  
error for the parameters.

Any help will be greatly appreciated.
Thanks.



------------------------------

Message: 100
Date: Wed, 28 Jan 2009 16:45:41 -0800 (PST)
From: beyar <bxx at mailinator.com>
Subject: [R]  Ignore text when reading data
To: r-help at r-project.org
Message-ID: <21718709.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii


Hi,
I have tab delimited text files containing numerical data,
like below, but many more columns.

As you can see, the first few lines are heading and file data.  I need to
skip these lines.  2 lines above where the numbers start is what I want to
use as my header rows.  I then want to ignore the next line (containing
units) and start importing data.  

The header row repeats.  i want to ignore the blank rows and text in the
data and then continue reading.  Is there an easy way to do this?  

thanks
Beyar


-------------------------
main data file - file 1
by mr x
etc


Time	out1	
Sec	mm
0.82495117	-0.020977303
1.3554688	-0.059330709
1.826416	-0.021419302
2.3295898	-0.051521059
2.8347168	-0.020661414


Time	out1	
Sec	mm
3.8679199	-0.000439643
4.3322754	-0.063477799
4.8015137	-0.024581354
5.3286133	-0.067487299
5.8212891	-0.011978489

-----------------------------------------------

-- 
View this message in context: http://www.nabble.com/Ignore-text-when-reading-data-tp21718709p21718709.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 101
Date: Thu, 29 Jan 2009 14:28:05 +1100
From: Remko Duursma <remkoduursma at gmail.com>
Subject: Re: [R] Ignore text when reading data
To: beyar <bxx at mailinator.com>
Cc: r-help at r-project.org
Message-ID:
	<80b45a8c0901281928x3143dbf9x3d9848011d3dce1f at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

# replace this bit, replace it with your file name
myfile <- textConnection(
"Time    out1
Sec     mm
0.82495117      -0.020977303
1.3554688       -0.059330709
1.826416        -0.021419302
2.3295898       -0.051521059
2.8347168       -0.020661414


Time    out1
Sec     mm
3.8679199       -0.000439643
4.3322754       -0.063477799
4.8015137       -0.024581354
5.3286133       -0.067487299
5.8212891       -0.011978489")

# which lines not to read
notread <- c(which(r==""),grep("Time ",r),grep("Sec ",r))

# read the data as text
mydata <- r[setdiff(1:length(r),notread)]

# make it into a dataframe (I think this can be done prettier, but whatever)
z <- paste(mydata, collapse="\n")
read.table(textConnection(z))


greetings
Remko

-------------------------------------------------
Remko Duursma
Post-Doctoral Fellow

Centre for Plant and Food Science
University of Western Sydney
Hawkesbury Campus
Richmond NSW 2753

Dept of Biological Science
Macquarie University
North Ryde NSW 2109
Australia

Mobile: +61 (0)422 096908



On Thu, Jan 29, 2009 at 11:45 AM, beyar <bxx at mailinator.com> wrote:
>
> Hi,
> I have tab delimited text files containing numerical data,
> like below, but many more columns.
>
> As you can see, the first few lines are heading and file data.  I need to
> skip these lines.  2 lines above where the numbers start is what I want to
> use as my header rows.  I then want to ignore the next line (containing
> units) and start importing data.
>
> The header row repeats.  i want to ignore the blank rows and text in the
> data and then continue reading.  Is there an easy way to do this?
>
> thanks
> Beyar
>
>
> -------------------------
> main data file - file 1
> by mr x
> etc
>
>
> Time    out1
> Sec     mm
> 0.82495117      -0.020977303
> 1.3554688       -0.059330709
> 1.826416        -0.021419302
> 2.3295898       -0.051521059
> 2.8347168       -0.020661414
>
>
> Time    out1
> Sec     mm
> 3.8679199       -0.000439643
> 4.3322754       -0.063477799
> 4.8015137       -0.024581354
> 5.3286133       -0.067487299
> 5.8212891       -0.011978489
>
> -----------------------------------------------
>
> --
> View this message in context: http://www.nabble.com/Ignore-text-when-reading-data-tp21718709p21718709.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



------------------------------

Message: 102
Date: Thu, 29 Jan 2009 14:29:01 +1100
From: Remko Duursma <remkoduursma at gmail.com>
Subject: Re: [R] Ignore text when reading data
To: beyar <bxx at mailinator.com>
Cc: r-help at r-project.org
Message-ID:
	<80b45a8c0901281929x4f536cccw3cd028b8286852e4 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Sorry, forgot this line after the textConnection bit:

r <- readLines(myfile)


-------------------------------------------------
Remko Duursma
Post-Doctoral Fellow

Centre for Plant and Food Science
University of Western Sydney
Hawkesbury Campus
Richmond NSW 2753

Dept of Biological Science
Macquarie University
North Ryde NSW 2109
Australia

Mobile: +61 (0)422 096908



On Thu, Jan 29, 2009 at 2:28 PM, Remko Duursma <remkoduursma at gmail.com> wrote:
> # replace this bit, replace it with your file name
> myfile <- textConnection(
> "Time    out1
> Sec     mm
> 0.82495117      -0.020977303
> 1.3554688       -0.059330709
> 1.826416        -0.021419302
> 2.3295898       -0.051521059
> 2.8347168       -0.020661414
>
>
> Time    out1
> Sec     mm
> 3.8679199       -0.000439643
> 4.3322754       -0.063477799
> 4.8015137       -0.024581354
> 5.3286133       -0.067487299
> 5.8212891       -0.011978489")
>
> # which lines not to read
> notread <- c(which(r==""),grep("Time ",r),grep("Sec ",r))
>
> # read the data as text
> mydata <- r[setdiff(1:length(r),notread)]
>
> # make it into a dataframe (I think this can be done prettier, but whatever)
> z <- paste(mydata, collapse="\n")
> read.table(textConnection(z))
>
>
> greetings
> Remko
>
> -------------------------------------------------
> Remko Duursma
> Post-Doctoral Fellow
>
> Centre for Plant and Food Science
> University of Western Sydney
> Hawkesbury Campus
> Richmond NSW 2753
>
> Dept of Biological Science
> Macquarie University
> North Ryde NSW 2109
> Australia
>
> Mobile: +61 (0)422 096908
>
>
>
> On Thu, Jan 29, 2009 at 11:45 AM, beyar <bxx at mailinator.com> wrote:
>>
>> Hi,
>> I have tab delimited text files containing numerical data,
>> like below, but many more columns.
>>
>> As you can see, the first few lines are heading and file data.  I need to
>> skip these lines.  2 lines above where the numbers start is what I want to
>> use as my header rows.  I then want to ignore the next line (containing
>> units) and start importing data.
>>
>> The header row repeats.  i want to ignore the blank rows and text in the
>> data and then continue reading.  Is there an easy way to do this?
>>
>> thanks
>> Beyar
>>
>>
>> -------------------------
>> main data file - file 1
>> by mr x
>> etc
>>
>>
>> Time    out1
>> Sec     mm
>> 0.82495117      -0.020977303
>> 1.3554688       -0.059330709
>> 1.826416        -0.021419302
>> 2.3295898       -0.051521059
>> 2.8347168       -0.020661414
>>
>>
>> Time    out1
>> Sec     mm
>> 3.8679199       -0.000439643
>> 4.3322754       -0.063477799
>> 4.8015137       -0.024581354
>> 5.3286133       -0.067487299
>> 5.8212891       -0.011978489
>>
>> -----------------------------------------------
>>
>> --
>> View this message in context: http://www.nabble.com/Ignore-text-when-reading-data-tp21718709p21718709.html
>> Sent from the R help mailing list archive at Nabble.com.
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>



------------------------------

Message: 103
Date: Wed, 28 Jan 2009 22:37:44 -0500
From: jim holtman <jholtman at gmail.com>
Subject: Re: [R] Ignore text when reading data
To: beyar <bxx at mailinator.com>
Cc: r-help at r-project.org
Message-ID:
	<644e1f320901281937n750e9133geb9984b87ed3f59b at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Try this:

> x <- readLines(textConnection("main data file - file 1
+ by mr x
+ etc
+
+
+ Time    out1
+ Sec     mm
+ 0.82495117      -0.020977303
+ 1.3554688       -0.059330709
+ 1.826416        -0.021419302
+ 2.3295898       -0.051521059
+ 2.8347168       -0.020661414
+
+
+ Time    out1
+ Sec     mm
+ 3.8679199       -0.000439643
+ 4.3322754       -0.063477799
+ 4.8015137       -0.024581354
+ 5.3286133       -0.067487299
+ 5.8212891       -0.011978489"))
> closeAllConnections()
> # remove blanks
> x <- x[x != ""]
> # get the lines with numbers
> indx.num <- grep("^[-0-9]", x)
> header <- x[indx.num[1] - 2]
> input <- read.table(textConnection(x[indx.num]))
> names(input) <- strsplit(header, "\\s+")[[1]]
> input
        Time         out1
1  0.8249512 -0.020977303
2  1.3554688 -0.059330709
3  1.8264160 -0.021419302
4  2.3295898 -0.051521059
5  2.8347168 -0.020661414
6  3.8679199 -0.000439643
7  4.3322754 -0.063477799
8  4.8015137 -0.024581354
9  5.3286133 -0.067487299
10 5.8212891 -0.011978489
>


On Wed, Jan 28, 2009 at 7:45 PM, beyar <bxx at mailinator.com> wrote:
>
> Hi,
> I have tab delimited text files containing numerical data,
> like below, but many more columns.
>
> As you can see, the first few lines are heading and file data.  I need to
> skip these lines.  2 lines above where the numbers start is what I want to
> use as my header rows.  I then want to ignore the next line (containing
> units) and start importing data.
>
> The header row repeats.  i want to ignore the blank rows and text in the
> data and then continue reading.  Is there an easy way to do this?
>
> thanks
> Beyar
>
>
> -------------------------
> main data file - file 1
> by mr x
> etc
>
>
> Time    out1
> Sec     mm
> 0.82495117      -0.020977303
> 1.3554688       -0.059330709
> 1.826416        -0.021419302
> 2.3295898       -0.051521059
> 2.8347168       -0.020661414
>
>
> Time    out1
> Sec     mm
> 3.8679199       -0.000439643
> 4.3322754       -0.063477799
> 4.8015137       -0.024581354
> 5.3286133       -0.067487299
> 5.8212891       -0.011978489
>
> -----------------------------------------------
>
> --
> View this message in context: http://www.nabble.com/Ignore-text-when-reading-data-tp21718709p21718709.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>



-- 
Jim Holtman
Cincinnati, OH
+1 513 646 9390

What is the problem that you are trying to solve?



------------------------------

Message: 104
Date: Wed, 28 Jan 2009 20:09:59 -0800 (PST)
From: beyar <bxx at mailinator.com>
Subject: Re: [R] Ignore text when reading data
To: r-help at r-project.org
Message-ID: <21720588.post at talk.nabble.com>
Content-Type: text/plain; charset=us-ascii


thanks to all for the solutions.  Especially to Jim H for this one which
worked perfectly...
(i only had to change the seperater on the header to /t as there are spaces
in header names)




----------------
Try this:

> x <- readLines(textConnection("main data file - file 1
+ by mr x
+ etc
+
+
+ Time    out1
+ Sec     mm
+ 0.82495117      -0.020977303
+ 1.3554688       -0.059330709
+ 1.826416        -0.021419302
+ 2.3295898       -0.051521059
+ 2.8347168       -0.020661414
+
+
+ Time    out1
+ Sec     mm
+ 3.8679199       -0.000439643
+ 4.3322754       -0.063477799
+ 4.8015137       -0.024581354
+ 5.3286133       -0.067487299
+ 5.8212891       -0.011978489"))
> closeAllConnections()
> # remove blanks
> x <- x[x != ""]
> # get the lines with numbers
> indx.num <- grep("^[-0-9]", x)
> header <- x[indx.num[1] - 2]
> input <- read.table(textConnection(x[indx.num]))
> names(input) <- strsplit(header, "\\s+")[[1]]
> input


beyar wrote:
> 
> Hi,
> I have tab delimited text files containing numerical data,
> like below, but many more columns.
> 
> As you can see, the first few lines are heading and file data.  I need to
> skip these lines.  2 lines above where the numbers start is what I want to
> use as my header rows.  I then want to ignore the next line (containing
> units) and start importing data.  
> 
> The header row repeats.  i want to ignore the blank rows and text in the
> data and then continue reading.  Is there an easy way to do this?  
> 
> thanks
> Beyar
> 
> 
> -------------------------
> main data file - file 1
> by mr x
> etc
> 
> 
> Time	out1	
> Sec	mm
> 0.82495117	-0.020977303
> 1.3554688	-0.059330709
> 1.826416	-0.021419302
> 2.3295898	-0.051521059
> 2.8347168	-0.020661414
> 
> 
> Time	out1	
> Sec	mm
> 3.8679199	-0.000439643
> 4.3322754	-0.063477799
> 4.8015137	-0.024581354
> 5.3286133	-0.067487299
> 5.8212891	-0.011978489
> 
> -----------------------------------------------
> 
> 

-- 
View this message in context: http://www.nabble.com/Ignore-text-when-reading-data-tp21718709p21720588.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 105
Date: Thu, 29 Jan 2009 07:52:37 +0100
From: "Weiss, Bernd " <bernd.weiss at uni-koeln.de>
Subject: [R] Question about collapse/aggregate and avoidance of loops
To: r-help at r-project.org
Message-ID: <49815235.2000303 at uni-koeln.de>
Content-Type: text/plain; charset=ISO-8859-15; format=flowed

Dear all,

given the following data

## original data
id <- c(1,1,1,2,2,3)
author <- c("A","B","C","D","E","F")
tmp <- data.frame(id,author)
tmp


 > tmp
   id author
1  1      A
2  1      B
3  1      C
4  2      D
5  2      E
6  3      F

What is the best (most efficient/vectorized/avoiding loops) approach to 
obtain the following data frame?

id 	author
1	"A, B, C"
2 	"D, E"
3	"F"


Thanks for your help,

Bernd





 > version
                _
platform       i386-pc-mingw32
arch           i386
os             mingw32
system         i386, mingw32
status         Patched
major          2
minor          8.1
year           2008
month          12
day            22
svn rev        47296
language       R
version.string R version 2.8.1 Patched (2008-12-22 r47296)



------------------------------

Message: 106
Date: Thu, 29 Jan 2009 06:54:49 +0000 (GMT)
From: justin bem <justin_bem at yahoo.fr>
Subject: [R] Re :   standard error of logit parameters
To: R Maillist <r-help at stat.math.ethz.ch>
Message-ID: <609242.98892.qm at web23208.mail.ird.yahoo.com>
Content-Type: text/plain

Run 


outfit<-nlm(..., hessian=T) and then standards error are
se<-diag(solve(outfit$hessian))


 
Justin BEM
BP 1917 Yaoundé
Tél (237) 76043774

 



________________________________
De : Bomee Park <bombom at stanford.edu>
À : r-help at r-project.org
Envoyé le : Jeudi, 29 Janvier 2009, 4h01mn 56s
Objet : [R] standard error of logit parameters

Hi everyone.

I am now estimating the parameters for a logit model, and trying to get the estimates by laximizing the log_likelihood.
The nlm function works nicely for maximizing the -(log_likelihood) and returns the parameter estimates that minimize the static, and the gradients also, but don't have any clue how I can get the standard error for the parameters.

Any help will be greatly appreciated.
Thanks.

______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


      
	[[alternative HTML version deleted]]



------------------------------

Message: 107
Date: Thu, 29 Jan 2009 08:17:48 +0100
From: Petr PIKAL <petr.pikal at precheza.cz>
Subject: Re: [R] t.test in a loop
To: Michael Pearmain <mpearmain at google.com>
Cc: r-help at r-project.org
Message-ID:
	<OF1FE4CBEF.AEE8B85E-ONC125754D.0027723A-C125754D.0028054F at precheza.cz>
	
Content-Type: text/plain; charset="US-ASCII"

Hi 

r-help-bounces at r-project.org napsal dne 28.01.2009 12:57:55:

> On Wed, 28 Jan 2009, Michael Pearmain wrote:
> 
> > Hi All,
> > I've been having a little trouble with creating a loop that will run a 
a
> > series of t.tests for inspection,
> > Below is the code i've tried, and some checks i've looked at.
> >
> > I've used the get(paste()) idea as i was told previously that the use 
of the
> > eval should try and be avoided.
> >
> > I've run a single syntax to check that my systax is correct and works
> > without any problems
> >> t.test(channel.data.train$News~channel.data.train$power)
> >
> > Can anyone offer any advice?
> 
> There's the additional problem that if your code worked it would do 16 
t-tests
> but only report the last one.
> 
> Assuming you want them printed
> 
> for(v in names(channel.data.train)[1:16]) {
>    print(v)
>    print(t.test(channel.data.train[[v]]~channel.data.train$power)
> }
> 
> or
> for(v in names(channel.data.train)[1:16]){
>    test <- eval(bquote(.(v)~power, data=channel.data.train)
>    print(eval(test))
> }
> 
> This sort of use of eval is fairly harmless.

Another option is to use lapply

lapply(channel.data.train[, 1:16], function(x) 
t.test((x)~channel.data.train$power)

Regards
Petr


> 
>         -thomas
> > Many thanks
> >
> > Mike
> >
> >> str(channel.data.train$power)
> > num [1:9913] 0 0 0 0 0 0 0 0 0 0 ...
> >> summary(channel.data.train$power)
> >   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
> > 0.0000  0.0000  0.0000  0.2368  0.0000  1.0000
> >> names(channel.data.train)
> > [1] "News"              "Entertainment"     "Communicate"
> > [4] "Lifestyle"         "Games"             "Music"
> > [7] "Money"             "Celebrity"         "Shopping"
> > [10] "Sport"             "Film"              "Travel"
> > [13] "Cars"              "Property"          "Chat"
> > [16] "Bet.Play.Win"      "config"            "exposed"
> > [19] "site"              "referrer"          "started"
> > [22] "last_viewed"       "num_views"         "secs_since_viewed"
> > [25] "register"          "secs.na"           "power"
> > [28] "tt"
> >> for(i in names(channel.data.train[,c(1:16)])){
> > +
> > 
t.test(get(paste("channel.data.train$",i,"~channel.data.train$power",sep="")))
> > + }
> > Error in get(paste("channel.data.train$", i, 
"~channel.data.train$power",
> > :
> >  variable "channel.data.train$News~channel.data.train$power" was not 
found
> >
> >
> >
> > --
> > Michael Pearmain
> > Senior Analytics Research Specialist
> >
> >
> > Google UK Ltd
> > Belgrave House
> > 76 Buckingham Palace Road
> > London SW1W 9TQ
> > United Kingdom
> > t +44 (0) 2032191684
> > mpearmain at google.com
> >
> > If you received this communication by mistake, please don't forward it 
to
> > anyone else (it may contain confidential or privileged information), 
please
> > erase all copies of it, including all attachments, and please let the 
sender
> > know it went to the wrong person. Thanks.
> >
> >    [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help at r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> >
> 
> Thomas Lumley         Assoc. Professor, Biostatistics
> tlumley at u.washington.edu   University of Washington, Seattle
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 108
Date: Thu, 29 Jan 2009 01:29:48 -0600 (CST)
From: markleeds at verizon.net
Subject: Re: [R] Re :   standard error of logit parameters
To: justin bem <justin_bem at yahoo.fr>
Cc: R Maillist <r-help at stat.math.ethz.ch>
Message-ID:
	<1961203354.65345681233214188971.JavaMail.javamailuser at localhost>
Content-Type: text/plain; charset=UTF-8; format=flowed; delsp=no

I'm sure below is fine but  john fox's CAR book has some nice examples 
of how to compute the logit parameters and variances from scratch using 
iteratively weighted least squares.



On Thu, Jan 29, 2009 at  1:54 AM, justin bem wrote:

> Run
>
> outfit<-nlm(..., hessian=T) and then standards error are
> se<-diag(solve(outfit$hessian))
>
>
> ??
> Justin BEM
> BP 1917 Yaound??
> T??l (237) 76043774
>
> ??
>
>
>
> ________________________________
> De : Bomee Park <bombom at stanford.edu>
> ?? : r-help at r-project.org
> Envoy?? le : Jeudi, 29 Janvier 2009, 4h01mn 56s
> Objet??: [R] standard error of logit parameters
>
> Hi everyone.
>
> I am now estimating the parameters for a logit model, and trying to 
> get the estimates by laximizing the log_likelihood.
> The nlm function works nicely for maximizing the -(log_likelihood) and 
> returns the parameter estimates that minimize the static, and the 
> gradients also, but don't have any clue how I can get the standard 
> error for the parameters.
>
> Any help will be greatly appreciated.
> Thanks.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>
>       	[[alternative HTML version deleted]]
>
>
>
>      ------------------------------
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 109
Date: Thu, 29 Jan 2009 08:38:57 +0100
From: Petr PIKAL <petr.pikal at precheza.cz>
Subject: [R] Odp: Question about collapse/aggregate and avoidance of
	loops
To: "Weiss, Bernd " <bernd.weiss at uni-koeln.de>
Cc: r-help at r-project.org
Message-ID:
	<OFCB718E52.0A552D54-ONC125754D.0029CE12-C125754D.0029F514 at precheza.cz>
	
Content-Type: text/plain; charset="US-ASCII"

Hi

r-help-bounces at r-project.org napsal dne 29.01.2009 07:52:37:

> Dear all,
> 
> given the following data
> 
> ## original data
> id <- c(1,1,1,2,2,3)
> author <- c("A","B","C","D","E","F")
> tmp <- data.frame(id,author)
> tmp
> 
> 
>  > tmp
>    id author
> 1  1      A
> 2  1      B
> 3  1      C
> 4  2      D
> 5  2      E
> 6  3      F
> 
> What is the best (most efficient/vectorized/avoiding loops) approach to 
> obtain the following data frame?
> 
> id    author
> 1   "A, B, C"
> 2    "D, E"
> 3   "F"

Not sure if it is most efficient but

 aggregate(tmp$author, list(tmp$id), function(x) paste(x, collapse=","))

can do the trick

Regards
Petr


> 
> 
> Thanks for your help,
> 
> Bernd
> 
> 
> 
> 
> 
>  > version
>                 _
> platform       i386-pc-mingw32
> arch           i386
> os             mingw32
> system         i386, mingw32
> status         Patched
> major          2
> minor          8.1
> year           2008
> month          12
> day            22
> svn rev        47296
> language       R
> version.string R version 2.8.1 Patched (2008-12-22 r47296)
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 110
Date: Thu, 29 Jan 2009 08:50:03 +0100
From: Petr PIKAL <petr.pikal at precheza.cz>
Subject: [R] Odp:  stack data sets
To: Nidhi Kohli <nidhik at umd.edu>, r-help at stat.math.ethz.ch
Message-ID:
	<OF8ECC66A1.290C3232-ONC125754D.002A39DA-C125754D.002AF935 at precheza.cz>
	
Content-Type: text/plain; charset="US-ASCII"

Hi

r-help-bounces at r-project.org napsal dne 28.01.2009 19:25:32:

> Hi All,
> 
> I'm generating 10 different data sets with 1 and 0 in a matrix form and 
> writing the output in separate files. Now I need to stack all these data 
sets 
> in one vector and I know that stack only operates on list or data frame 
> however I got these data sets by converting list to a matrix so can't go 

> backwards now. Is there a way i can still use Stack?

It is rather difficult to understand what you want to do. The code you 
provide do not work as I presume only you have C:/NCME path and your data.

Stack works with data frames as you point out. However if your matrix has 
appropriate form and names you can easily transform it to data frame and 
use stack.


pg <- unstack(PlantGrowth)
pg<-as.matrix(pg)
pg
      ctrl trt1 trt2
 [1,] 4.17 4.81 6.31
 [2,] 5.58 4.17 5.12
...
 [9,] 5.33 4.32 5.80
[10,] 5.14 4.69 5.26
> stack(pg)
Error in rep.int(names(x), lapply(x, length)) : invalid 'times' value
> as.data.frame(pg)
   ctrl trt1 trt2
1  4.17 4.81 6.31
2  5.58 4.17 5.12
...
9  5.33 4.32 5.80
10 5.14 4.69 5.26
> stack(as.data.frame(pg))
   values  ind
1    4.17 ctrl
2    5.58 ctrl
3    5.18 ctrl
4    6.11 ctrl
5    4.50 ctrl
6    4.61 ctrl
....

Regards
Petr



> 
> Please see the program:
> 
> #Importing psych & ltm library for all the simulation related functions
> library(ltm)
> library(psych)
> # Settting the working directory path to C:/NCME
> path="C:/NCME"
> setwd(path)
> #IRT Data Simulation Routine#
> n.exams = 500   #Sets number of examinees to be generated#
> n.items = 20     #Sets number of items to be generated#
> #The following intialize empty (NA) vectors or matrices#
> beta.values = rep(NA,n.items)
> resp.prob=matrix(rep(NA, n.exams*n.items), nrow=n.exams, ncol=n.items)
> Observed_Scores=matrix(rep(NA, n.exams*n.items), nrow=n.exams, 
ncol=n.items)
> str(Observed_Scores)
> for (k in 1:10)
> {
> #Setting the starting point for seed
> set.seed(k)
> #filling item parameters into beta.values
> beta.values = runif(n.items,-2,2)
> #Calculating Threshold
> thresh.values = .5 * beta.values
> 
> #Using the function to generate the Parallel Model CTT data
> GenData <- congeneric.sim(N=500, loads = rep(.5,20), err=NULL, short = 
FALSE)
> 
> #Storing Observed Score in a variable
> Observed_Scores = GenData[[3]]
> #Exporting Observed scores to output file
> ObservedScores_Data <- paste("Observed_Scores_",k,".dat")
> 
write.table(Observed_Scores,ObservedScores_Data,row.name=FALSE,col.name=FALSE)
> Zero = 0
> One = 1
> for (t in 1:20)
> {
> for (s in 1:500)
> {
> if (Observed_Scores[s,t]<= thresh.values[t])
> resp.prob[s,t] = Zero
> else
> resp.prob[s,t] = One
> 
> }
> }
> ResponseData <- paste("ResponseMatrix_",k,".dat")
> ThreshData <- paste("Threshold_",k,".dat")
> write.table(resp.prob,ResponseData,row.name=FALSE,col.name=FALSE)
> write.table(thresh.values,ThreshData,row.name=FALSE,col.name=FALSE)
> 
> #####STACKING ALL THE OUTPUTS#########
> CommonFile <- stack(resp.prob)
> ######################################
> 
> #Rounding upto 2 decimal places while showing the correlation matrix
> round(cor(GenData$observed),2)
> #Factor Score
> FactorScore=factor.pa(GenData$observed,1,scores = "TRUE")
> round(cor(FactorScore$scores,GenData$latent),2)
> filename_fs <- paste("FactorScore_",k,".dat")
> #Exporting Factor Scores to Output file
> write.table(FactorScore$scores,filename_fs,col.name=FALSE, 
row.name=FALSE)
> }
> 
> 
> Thank you
> Nidhi
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 111
Date: Thu, 29 Jan 2009 10:08:47 +0200
From: Hadassa Brunschwig <hadassa.brunschwig at mail.huji.ac.il>
Subject: Re: [R] Character SNP data to binary MAF data
To: Jorge Ivan Velez <jorgeivanvelez at gmail.com>
Cc: r-help at r-project.org
Message-ID:
	<db80b30d0901290008j2f25ab58mcbe87677c55c1c52 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

Hi

An example is as follows. Consider the character 3x6 matrix:

a A a T A t
G g t T T t
A a C C c c

For each row I would like to identify the most frequent letter and
assign a 1 to it and 0
to the less frequent character. That is, in row 1 the most frequent
letter is A (I do not differentiate between capital and non-capital
letters), in row 2 T and in row 3 C. After the binary conversion
the resulting matrix would look like that:

1 1 1 0 1 0
0 0 1 1 1 1
0 0 1 1 1 1

Any suggestions on how to do that (and I am sure I am not the first
one to try this).

Thanks
Hadassa


On Thu, Jan 29, 2009 at 1:50 AM, Jorge Ivan Velez
<jorgeivanvelez at gmail.com> wrote:
>
> Hi Hadassa,
> Do you have a sample of your data and the output you want? It might be
> useful for us in order to provide any help to you.
> Regards,
>
> Jorge
>
>
> On Wed, Jan 28, 2009 at 8:36 AM, Hadassa Brunschwig
> <hadassa.brunschwig at mail.huji.ac.il> wrote:
>>
>> Hi
>>
>> I am sure there is a function out there already but I couldn't find it.
>> I have SNP data, that is, a matrix which contains in each row two
>> characters (they are different in each row) and I would like to
>> convert this matrix to a binary one according to the minor allele
>> frequency. For non-geneticists: I want to have a binary matrix
>> for which in each row the 0 stands for the less frequent character
>> and 1 for the more frequent character.
>>
>> Thanks for any suggestions.
>> Hadassa
>>
>> --
>> Hadassa Brunschwig
>> PhD Student
>> Department of Statistics
>> The Hebrew University of Jerusalem
>> http://www.stat.huji.ac.il
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>
>



-- 
Hadassa Brunschwig
PhD Student
Department of Statistics
The Hebrew University of Jerusalem
http://www.stat.huji.ac.il



------------------------------

Message: 112
Date: Thu, 29 Jan 2009 09:14:49 +0100
From: Bernd Weiss <bernd.weiss at uni-koeln.de>
Subject: Re: [R] Odp: Question about collapse/aggregate and avoidance
	of	loops
To: r-help at r-project.org, petr.pikal at precheza.cz,
	markleeds at verizon.net
Message-ID: <49816579.2000102 at uni-koeln.de>
Content-Type: text/plain; charset=UTF-8; format=flowed

markleeds at verizon.net schrieb:
>  Thanks Petr because I sent Bernd a solution offline but yours is MUCH 
> NICER.  it's not worth showing you because it was pretty ugly.
> 

Dear Mark & Petr,

Thank your very much! I like both solutions. Petr's is the more obvious 
one but Mark's solution is good for rethinking my understanding of 
lapply :-)

Again, thank you very much.

Bernd



------------------------------

Message: 113
Date: Thu, 29 Jan 2009 08:28:44 +0000
From: Barry Rowlingson <b.rowlingson at lancaster.ac.uk>
Subject: Re: [R] Character SNP data to binary MAF data
To: Hadassa Brunschwig <hadassa.brunschwig at mail.huji.ac.il>
Cc: r-help at r-project.org
Message-ID:
	<d8ad40b50901290028j3b97129bo34100a6606467217 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

2009/1/29 Hadassa Brunschwig <hadassa.brunschwig at mail.huji.ac.il>:
> Hi
>
> An example is as follows. Consider the character 3x6 matrix:
>
> a A a T A t
> G g t T T t
> A a C C c c
>
> For each row I would like to identify the most frequent letter and
> assign a 1 to it and 0
> to the less frequent character. That is, in row 1 the most frequent
> letter is A (I do not differentiate between capital and non-capital
> letters), in row 2 T and in row 3 C. After the binary conversion
> the resulting matrix would look like that:
>
> 1 1 1 0 1 0
> 0 0 1 1 1 1
> 0 0 1 1 1 1

 What if there's a tie for most frequent? Do you want 1s for all the
most frequent characters? Or choose one randomly? Or zeroes?

 Examples: what do the following become:

 A A C C T G
 A A C C T T
 A A A A A A

Or are such cases not possible?

 Some hints for you to work on this yourself:

   help('table') - the table function works out counts of elements of vectors
   help('tolower') - for changing upper to lower case
   help('apply') - for working on rows of data frames

 then check out any basic R tutorial on subscripting and replacement,
and you may need to work out how to loop over things with 'for'. You
should be able to make a working solution in a dozen or so lines of R.
Don't be surprised if some R guru on here does it in 2 or 3 lines of
[[elided Yahoo spam]]

Barry



------------------------------

Message: 114
Date: Thu, 29 Jan 2009 00:33:31 -0800 (PST)
From: Thomas Lumley <tlumley at u.washington.edu>
Subject: Re: [R] Character SNP data to binary MAF data
To: Hadassa Brunschwig <hadassa.brunschwig at mail.huji.ac.il>
Cc: r-help at r-project.org
Message-ID:
	<Pine.LNX.4.43.0901290033310.11961 at hymn32.u.washington.edu>
Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed


The first step is to convert your data to all uppercase with toupper().

Then it depends on how tidy the data are: are there missing data, are some SNPs monomorphic in your sample, etc.

If there are no missing data you can use

N<-ncol(the_data)
halfN <- N/2

maf_one_row <-function(arow) {
    rval<-numeric(N)
    if (sum(i<-arow=="A")>halfN) {
         rval[]<-1
    } else if (sum(i<-arow=="C")>halfN){
         rval[i]<-1
    } else if (sum(i<-arow=="T"))>halfN){
         rval[i]<-1
    } else if (sum(i<-arow=="G")>halfN){
         rval[i]<-1
    }
    rval
}

apply(the_data, 1, maf_one_row)

YOu could also use table() to find the two alleles, but you have to make sure that the code still works when there is only one allele.

      -thomas

On Thu, 29 Jan 2009, Hadassa Brunschwig wrote:

> Hi
>
> An example is as follows. Consider the character 3x6 matrix:
>
> a A a T A t
> G g t T T t
> A a C C c c
>
> For each row I would like to identify the most frequent letter and
> assign a 1 to it and 0
> to the less frequent character. That is, in row 1 the most frequent
> letter is A (I do not differentiate between capital and non-capital
> letters), in row 2 T and in row 3 C. After the binary conversion
> the resulting matrix would look like that:
>
> 1 1 1 0 1 0
> 0 0 1 1 1 1
> 0 0 1 1 1 1
>
> Any suggestions on how to do that (and I am sure I am not the first
> one to try this).
>
> Thanks
> Hadassa
>
>
> On Thu, Jan 29, 2009 at 1:50 AM, Jorge Ivan Velez
> <jorgeivanvelez at gmail.com> wrote:
>>
>> Hi Hadassa,
>> Do you have a sample of your data and the output you want? It might be
>> useful for us in order to provide any help to you.
>> Regards,
>>
>> Jorge
>>
>>
>> On Wed, Jan 28, 2009 at 8:36 AM, Hadassa Brunschwig
>> <hadassa.brunschwig at mail.huji.ac.il> wrote:
>>>
>>> Hi
>>>
>>> I am sure there is a function out there already but I couldn't find it.
>>> I have SNP data, that is, a matrix which contains in each row two
>>> characters (they are different in each row) and I would like to
>>> convert this matrix to a binary one according to the minor allele
>>> frequency. For non-geneticists: I want to have a binary matrix
>>> for which in each row the 0 stands for the less frequent character
>>> and 1 for the more frequent character.
>>>
>>> Thanks for any suggestions.
>>> Hadassa
>>>
>>> --
>>> Hadassa Brunschwig
>>> PhD Student
>>> Department of Statistics
>>> The Hebrew University of Jerusalem
>>> http://www.stat.huji.ac.il
>>>
>>> ______________________________________________
>>> R-help at r-project.org mailing list
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide
>>> http://www.R-project.org/posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>
>>
>
>
>
> --
> Hadassa Brunschwig
> PhD Student
> Department of Statistics
> The Hebrew University of Jerusalem
> http://www.stat.huji.ac.il
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

Thomas Lumley			Assoc. Professor, Biostatistics
tlumley at u.washington.edu	University of Washington, Seattle



------------------------------

Message: 115
Date: Thu, 29 Jan 2009 00:41:09 -0800
From: Patrick Aboyoun <paboyoun at fhcrc.org>
Subject: Re: [R] Character SNP data to binary MAF data
To: r-help at r-project.org
Cc: Thomas Lumley <tlumley at u.washington.edu>,	Hadassa Brunschwig
	<hadassa.brunschwig at mail.huji.ac.il>
Message-ID: <20090129004109.s7162gkn2uc4gsko at webmail.fhcrc.org>
Content-Type: text/plain;	charset=ISO-8859-1;	DelSp="Yes";
	format="flowed"

Hadassa,
You may want to check out the snpMatrix package in Bioconductor

http://bioconductor.org/packages/2.3/bioc/html/snpMatrix.html
http://bioconductor.org/packages/2.4/bioc/html/snpMatrix.html

It contains classes that manage this type of information and should  
minimize your coding effort.


Patrick


Quoting Thomas Lumley <tlumley at u.washington.edu>:

>
> The first step is to convert your data to all uppercase with toupper().
>
> Then it depends on how tidy the data are: are there missing data, are
> some SNPs monomorphic in your sample, etc.
>
> If there are no missing data you can use
>
> N<-ncol(the_data)
> halfN <- N/2
>
> maf_one_row <-function(arow) {
>    rval<-numeric(N)
>    if (sum(i<-arow=="A")>halfN) {
>         rval[]<-1
>    } else if (sum(i<-arow=="C")>halfN){
>         rval[i]<-1
>    } else if (sum(i<-arow=="T"))>halfN){
>         rval[i]<-1
>    } else if (sum(i<-arow=="G")>halfN){
>         rval[i]<-1
>    }
>    rval
> }
>
> apply(the_data, 1, maf_one_row)
>
> YOu could also use table() to find the two alleles, but you have to
> make sure that the code still works when there is only one allele.
>
>      -thomas
>
> On Thu, 29 Jan 2009, Hadassa Brunschwig wrote:
>
>> Hi
>>
>> An example is as follows. Consider the character 3x6 matrix:
>>
>> a A a T A t
>> G g t T T t
>> A a C C c c
>>
>> For each row I would like to identify the most frequent letter and
>> assign a 1 to it and 0
>> to the less frequent character. That is, in row 1 the most frequent
>> letter is A (I do not differentiate between capital and non-capital
>> letters), in row 2 T and in row 3 C. After the binary conversion
>> the resulting matrix would look like that:
>>
>> 1 1 1 0 1 0
>> 0 0 1 1 1 1
>> 0 0 1 1 1 1
>>
>> Any suggestions on how to do that (and I am sure I am not the first
>> one to try this).
>>
>> Thanks
>> Hadassa
>>
>>
>> On Thu, Jan 29, 2009 at 1:50 AM, Jorge Ivan Velez
>> <jorgeivanvelez at gmail.com> wrote:
>>>
>>> Hi Hadassa,
>>> Do you have a sample of your data and the output you want? It might be
>>> useful for us in order to provide any help to you.
>>> Regards,
>>>
>>> Jorge
>>>
>>>
>>> On Wed, Jan 28, 2009 at 8:36 AM, Hadassa Brunschwig
>>> <hadassa.brunschwig at mail.huji.ac.il> wrote:
>>>>
>>>> Hi
>>>>
>>>> I am sure there is a function out there already but I couldn't find it.
>>>> I have SNP data, that is, a matrix which contains in each row two
>>>> characters (they are different in each row) and I would like to
>>>> convert this matrix to a binary one according to the minor allele
>>>> frequency. For non-geneticists: I want to have a binary matrix
>>>> for which in each row the 0 stands for the less frequent character
>>>> and 1 for the more frequent character.
>>>>
>>>> Thanks for any suggestions.
>>>> Hadassa
>>>>
>>>> --
>>>> Hadassa Brunschwig
>>>> PhD Student
>>>> Department of Statistics
>>>> The Hebrew University of Jerusalem
>>>> http://www.stat.huji.ac.il
>>>>
>>>> ______________________________________________
>>>> R-help at r-project.org mailing list
>>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>>> PLEASE do read the posting guide
>>>> http://www.R-project.org/posting-guide.html
>>>> and provide commented, minimal, self-contained, reproducible code.
>>>
>>>
>>
>>
>>
>> --
>> Hadassa Brunschwig
>> PhD Student
>> Department of Statistics
>> The Hebrew University of Jerusalem
>> http://www.stat.huji.ac.il
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
> Thomas Lumley			Assoc. Professor, Biostatistics
> tlumley at u.washington.edu	University of Washington, Seattle
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 116
Date: Thu, 29 Jan 2009 08:46:01 +0000
From: Patrick Burns <pburns at pburns.seanet.com>
Subject: Re: [R] Question about collapse/aggregate and avoidance of
	loops
To: "Weiss, Bernd " <bernd.weiss at uni-koeln.de>
Cc: r-help at r-project.org
Message-ID: <49816CC9.9060905 at pburns.seanet.com>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

I think you are looking for

split(author, id)


Patrick Burns
patrick at burns-stat.com
+44 (0)20 8525 0696
http://www.burns-stat.com
(home of "The R Inferno" and "A Guide for the Unwilling S User")

Weiss, Bernd wrote:
> Dear all,
>
> given the following data
>
> ## original data
> id <- c(1,1,1,2,2,3)
> author <- c("A","B","C","D","E","F")
> tmp <- data.frame(id,author)
> tmp
>
>
> > tmp
>   id author
> 1  1      A
> 2  1      B
> 3  1      C
> 4  2      D
> 5  2      E
> 6  3      F
>
> What is the best (most efficient/vectorized/avoiding loops) approach 
> to obtain the following data frame?
>
> id     author
> 1    "A, B, C"
> 2     "D, E"
> 3    "F"
>
>
> Thanks for your help,
>
> Bernd
>
>
>
>
>
> > version
>                _
> platform       i386-pc-mingw32
> arch           i386
> os             mingw32
> system         i386, mingw32
> status         Patched
> major          2
> minor          8.1
> year           2008
> month          12
> day            22
> svn rev        47296
> language       R
> version.string R version 2.8.1 Patched (2008-12-22 r47296)
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>



------------------------------

Message: 117
Date: Thu, 29 Jan 2009 08:53:05 +0000
From: Barry Rowlingson <b.rowlingson at lancaster.ac.uk>
Subject: Re: [R] Character SNP data to binary MAF data
To: Patrick Aboyoun <paboyoun at fhcrc.org>
Cc: r-help at r-project.org, Thomas Lumley <tlumley at u.washington.edu>,
	Hadassa Brunschwig <hadassa.brunschwig at mail.huji.ac.il>
Message-ID:
	<d8ad40b50901290053m2f937ddft8923db40c1a1b7c3 at mail.gmail.com>
Content-Type: text/plain; charset=ISO-8859-1

2009/1/29 Patrick Aboyoun <paboyoun at fhcrc.org>:
> Hadassa,
> You may want to check out the snpMatrix package in Bioconductor
>
> http://bioconductor.org/packages/2.3/bioc/html/snpMatrix.html
> http://bioconductor.org/packages/2.4/bioc/html/snpMatrix.html
>
> It contains classes that manage this type of information and should minimize
> your coding effort.

It's not that much effort - this code turns all ties into 1s:

snp2maf=function(m){
m=toupper(m)
return(t(apply(m,1,makeBin)))
}

makeBin = function(chars){
tc = table(chars)
maxV = names(tc[tc==max(tc)])
matches = match(chars,maxV)
r=as.integer(!is.na(matches))
return(r)
}

 then:

> m
      [,1] [,2] [,3] [,4] [,5]
 [1,] "t"  "g"  "g"  "g"  "t"
 [2,] "a"  "G"  "a"  "C"  "c"
 [3,] "A"  "T"  "c"  "c"  "C"
 [4,] "g"  "T"  "c"  "A"  "C"
 [5,] "G"  "C"  "G"  "g"  "G"
 [6,] "G"  "t"  "T"  "a"  "C"
 [7,] "A"  "G"  "T"  "g"  "T"
 [8,] "T"  "a"  "C"  "a"  "T"
 [9,] "t"  "g"  "g"  "c"  "T"
[10,] "A"  "t"  "t"  "c"  "A"
> snp2maf(m)
      [,1] [,2] [,3] [,4] [,5]
 [1,]    0    1    1    1    0
 [2,]    1    0    1    1    1
 [3,]    0    0    1    1    1
 [4,]    0    0    1    0    1
 [5,]    1    0    1    1    1
 [6,]    0    1    1    0    0
 [7,]    0    1    1    1    1
 [8,]    1    1    0    1    1
 [9,]    1    1    1    0    1
[10,]    1    1    1    0    1
>

Barry



------------------------------

Message: 118
Date: Thu, 29 Jan 2009 10:19:37 +0100
From: "Gerit Offermann" <gerit.offermann at gmx.de>
Subject: [R] Multiple tables
To: R-help at r-project.org
Message-ID: <20090129091937.122580 at gmx.net>
Content-Type: text/plain; charset="iso-8859-1"

Dear list,

I have a set of 100+ variables. I would like to have one by one crosstables for each variable. I started with
table(variable1, variable2)
table(variable1, variable3)
table(variable1, variable4)
...
table(variable2, variable3)
table(variable2, variable4)
...

It seems rather tedious.

Any better ideas around?

Thanks for any help!
Gerit
-- 
NUR NOCH BIS 31.01.! GMX FreeDSL - Telefonanschluss + DSL 
f?r nur 16,37 EURO/mtl.!* http://dsl.gmx.de/?ac=OM.AD.PD003K11308T4569a



------------------------------

Message: 119
Date: Thu, 29 Jan 2009 01:25:13 -0800 (PST)
From: joe1985 <johannes at dsr.life.ku.dk>
Subject: [R]  Text in a character vector to indicate "ifelse" argument
To: r-help at r-project.org
Message-ID: <21722983.post at talk.nabble.com>
Content-Type: text/plain; charset=UTF-8


Hello

I have a data set that looks like this; 

> b2
          dato         chr                      status           PRRSvac
PRRSsanVac PRRSsanDk PRRSdk
33  2007-12-03 090432                    R?d SPF        
34  2007-02-09 090432              R?d SPF+sanDK        
35  2002-12-17 090432                 R?d SPF+DK        
36  2002-11-27 090432              R?d SPF+sanDK        
37  2002-07-23 090432                 R?d SPF+DK        
38  2001-08-23 090432                    R?d SPF        
39  2000-01-01 090432          SPF-X,  PRRS-neg.        
40  1999-05-01 090432           MS-X,  PRRS-neg.        
81  2001-08-23 022458                    R?d SPF        
82  1999-01-22 022458          SPF-X,  PRRS-neg.       
130 2008-10-16 080385 R?d SPF+Myc+Ap2+Nys+DK+Vac       
131 2003-03-18 080385     R?d SPF+Myc+Ap2+DK+Vac        
132 2002-11-01 080385         R?d SPF+Myc+DK+Vac        
133 2002-02-07 080385            R?d SPF+Myc+Vac        
134 2000-09-19 080385         MS-X,  PRRS-pos VAC       
135 1999-01-22 080385            MS-X,  PRRS-neg        
176 2008-10-28 013168 R?d SPF+Myc+Ap2+Nys+DK+Vac        
177 2003-05-23 013168     R?d SPF+Myc+Ap2+DK+Vac        
178 2002-11-01 013168         R?d SPF+Myc+DK+Vac        
179 2001-07-03 013168            R?d SPF+Myc+Vac        
180 2000-09-01 013168         MS-X,  PRRS-pos VAC      
181 2000-06-02 013168            MS-X,  PRRS-neg        
182 2000-04-03 013168     SKM-X,  +Ap2,  PRRS-neg       
183 1999-01-22 013168            MS-X,  PRRS-neg        

Where I have used;

b2$PRRSvac <- ifelse(b2$status=='PRRS-pos VAC' | b2$status=='Vac',1,0)
b2$PRRSdk <- ifelse(b2$status=='PRRS-pos DK' | b2$status=='DK',1,0)
b2$PRRSsanVac <- ifelse(b2$status=='sanVac',1,0)
b2$PRRSsanDk <- ifelse(b2$status=='sanDK',1,0)

to creat the last four variables, but it wont work!!! The variable status
has class "character". 

Can anyone help me?

-- 
View this message in context: http://www.nabble.com/Text-in-a-character-vector-to-indicate-%22ifelse%22-argument-tp21722983p21722983.html
Sent from the R help mailing list archive at Nabble.com.



------------------------------

Message: 120
Date: Thu, 29 Jan 2009 20:43:25 +1100
From: Jim Lemon <jim at bitwrit.com.au>
Subject: Re: [R] help with plot layout
To: mauede at alice.it
Cc: r-help at stat.math.ethz.ch, gunter.berton at gene.com
Message-ID: <49817A3D.6060702 at bitwrit.com.au>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

mauede at alice.it wrote:
> It takes a lot of sweat to generate a composite plot with R ...  sigh.
> I though I was almost done when I met the umpteenth hurdle. I cannot place a nice title on the 2nd plot (raw signal)
> on the layout. I do not have control on where either the "main" option of "plot" function, or "title", place the text
> string which keeps dysplaying chopped from above. I also tried "text", changing many times the string coordinates, but could not see any text anywhere on the canvas . 
> By the way, since the layout breaks the canvas into 4 parts, are the text coordinates absolute (referred to the canvas) or 
> relative (referred to the part) ?
> Please, find attached the generated drawing. The generating script is i the following.
>   
Hi Maura,
You may find tab.title in the plotrix package helpful.

Jim



------------------------------

Message: 121
Date: Thu, 29 Jan 2009 08:20:30 +0000
From: geert aarts <geert_aarts at hotmail.com>
Subject: Re: [R] convergence problem gamm / lme
To: <r-help at r-project.org>
Message-ID: <BLU128-W2832C2C6A471A6C725C85684C90 at phx.gbl>
Content-Type: text/plain; charset="utf-8"


Simon, thanks for your reply and your suggestions. 

I fitted the following glmm's 

gamm3<-try(glmmPQL(count~offset(offsetter)+poly(lon,3)*poly(lat,3),random=list(code_tripnr=~1),family="poisson"))

Which worked OK (see summary below)

I also fitted a model using quasipoisson, but that didn't help. I actually also thought that glmmPQL and gamm estimate the dispersion parameter and hence assumes a quasipoisson distribution, even if you specify poisson. Is that correct?

Finally I tried fitting a model to less data, and sometimes gamm managed to converge (see summary below). 
So would it be possible to use the parameter estimates from the model fitted to less data as starting values for the gamm fitted to the full data set? 
Or do you have any other suggestions?

Thanks.
Cheers Geert





>  
gamm3<-try(glmmPQL(count~offset(offsetter)+poly(lon,3)*poly(lat,3),random=list(code_tripnr=~1),f

amily="poisson"))



iteration
1

iteration
2

iteration
3

>   detach(Disc_age)

>
summary(gamm3)

Linear
mixed-effects model fit by maximum likelihood

 Data: NULL

  AIC BIC logLik

   NA  NA    
NA



Random
effects:

 Formula: ~1 | code_tripnr

        (Intercept) Residual

StdDev:
0.001391914 231.9744



Variance
function:

 Structure: fixed weights

 Formula: ~invwt

Fixed
effects: count ~ offset(offsetter) + poly(lon, 3) * poly(lat, 3)

                                Value
Std.Error   DF     t-value p-value

(Intercept)                    -1.582     11.96 2024 -0.13232174  0.8947

poly(lon,
3)1                  -4.048   1397.33 2024 -0.00289673  0.9977

poly(lon,
3)2                 -22.013    699.71 2024 -0.03145996  0.9749

poly(lon,
3)3                  -8.538    593.87 2024 -0.01437683  0.9885

poly(lat,
3)1                -109.624    666.05 2024 -0.16458856  0.8693

poly(lat,
3)2                -104.179    381.37 2024 -0.27316977  0.7848

poly(lat,
3)3                 -10.661    221.93 2024 -0.04803585  0.9617

poly(lon,
3)1:poly(lat, 3)1  4290.737  61369.98 2024 
0.06991589  0.9443

poly(lon,
3)2:poly(lat, 3)1  1853.559  36835.63 2024 
0.05031972  0.9599

poly(lon,
3)3:poly(lat, 3)1  -240.521  25771.80 2024 -0.00933272  0.9926

poly(lon,
3)1:poly(lat, 3)2  2540.147  41378.38 2024 
0.06138826  0.9511

poly(lon,
3)1:poly(lat, 3)2  2540.147  41378.38 2024 
0.06138826  0.9511

poly(lon,
3)2:poly(lat, 3)2 -1803.911  21522.17
2024 -0.08381643  0.9332

poly(lon,
3)3:poly(lat, 3)2  1040.858  16352.56 2024 
0.06365109  0.9493

poly(lon,
3)1:poly(lat, 3)3   632.587  12180.28 2024 
0.05193535  0.9586

poly(lon,
3)2:poly(lat, 3)3  -394.339  13088.72 2024 -0.03012818  0.9760

poly(lon,
3)3:poly(lat, 3)3  -543.502   6221.71 2024 -0.08735569  0.9304

 Correlation:

                            (Intr) ply(ln,3)1
ply(ln,3)2 ply(ln,3)3 ply(lt,3)1

poly(lon,
3)1                0.889

poly(lon,
3)2                0.938  0.878

poly(lon,
3)3                0.843  0.981     
0.792

poly(lat,
3)1               -0.829 -0.949     -0.906    
-0.882

poly(lat,
3)2                0.859  0.578      0.742     
0.538     -0.474

poly(lat,
3)3               -0.552 -0.783     -0.579    
-0.756      0.837

poly(lon,
3)1:poly(lat, 3)1 -0.947 -0.974    
-0.940     -0.940      0.925

poly(lon,
3)2:poly(lat, 3)1 -0.934 -0.950    
-0.857     -0.929      0.881

poly(lon,
3)3:poly(lat, 3)1 -0.818 -0.963    
-0.866     -0.945      0.931

poly(lon,
3)1:poly(lat, 3)2  0.808  0.975     
0.784      0.968     -0.928

poly(lon,
3)2:poly(lat, 3)2  0.737  0.575     
0.853      0.465     -0.659

poly(lon,
3)3:poly(lat, 3)2  0.735  0.896     
0.647      0.938     -0.765

poly(lon,
3)1:poly(lat, 3)3 -0.794 -0.592    
-0.823     -0.518      0.591

poly(lon,
3)2:poly(lat, 3)3 -0.542 -0.737    
-0.419     -0.781      0.635

poly(lon,
3)3:poly(lat, 3)3 -0.398 -0.383    
-0.534     -0.334      0.425

                            ply(lt,3)2
ply(lt,3)3 p(,3)1:(,3)1 p(,3)2:(,3)1

poly(lon,
3)1

poly(lon,
3)2

poly(lon,
3)3

poly(lat,
3)1

poly(lat,
3)2

poly(lat,
3)3               -0.136

poly(lon,
3)1:poly(lat, 3)1 -0.708      0.690

poly(lon,
3)2:poly(lat, 3)1 -0.701      0.710      0.933

poly(lon,
3)3:poly(lat, 3)1 -0.499      0.738      0.956        0.849

poly(lon,
3)1:poly(lat, 3)2  0.458     -0.845    
-0.915       -0.934

poly(lon,
3)2:poly(lat, 3)2  0.683     -0.344    
-0.719       -0.522

poly(lon,
3)2:poly(lat, 3)2  0.683     -0.344    
-0.719       -0.522

poly(lon,
3)3:poly(lat, 3)2  0.464     -0.655    
-0.834       -0.884

poly(lon,
3)1:poly(lat, 3)3 -0.823      0.241      0.752        0.594

poly(lon,
3)2:poly(lat, 3)3 -0.300      0.707      0.612        0.788

poly(lon,
3)3:poly(lat, 3)3 -0.266      0.148      0.493        0.250

                            p(,3)3:(,3)1
p(,3)1:(,3)2 p(,3)2:(,3)2 p(,3)3:(,3)2

poly(lon,
3)1

poly(lon,
3)2

poly(lon,
3)3

poly(lat,
3)1

poly(lat,
3)2

poly(lat,
3)3

poly(lon,
3)1:poly(lat, 3)1

poly(lon,
3)2:poly(lat, 3)1

poly(lon,
3)3:poly(lat, 3)1

poly(lon,
3)1:poly(lat, 3)2 -0.928

poly(lon,
3)2:poly(lat, 3)2 -0.637        0.432

poly(lon,
3)3:poly(lat, 3)2 -0.851       
0.935        0.245

poly(lon,
3)1:poly(lat, 3)3  0.642       -0.482       -0.894       -0.410

poly(lon,
3)2:poly(lat, 3)3  0.609       -0.822        0.007       -0.847

poly(lon,
3)3:poly(lat, 3)3  0.551       -0.327       -0.637       -0.291

                            p(,3)1:(,3)3
p(,3)2:(,3)3

poly(lon,
3)1

poly(lon,
3)2

poly(lon,
3)3

poly(lat,
3)1

poly(lat,
3)2

poly(lat,
3)3

poly(lon,
3)1:poly(lat, 3)1

poly(lon,
3)2:poly(lat, 3)1

poly(lon,
3)3:poly(lat, 3)1

poly(lon,
3)1:poly(lat, 3)2

poly(lon,
3)2:poly(lat, 3)2

poly(lon,
3)3:poly(lat, 3)2

poly(lon,
3)1:poly(lat, 3)3

poly(lon,
3)3:poly(lat, 3)1

poly(lon,
3)1:poly(lat, 3)2

poly(lon,
3)2:poly(lat, 3)2

poly(lon,
3)3:poly(lat, 3)2

poly(lon,
3)1:poly(lat, 3)3

poly(lon,
3)2:poly(lat, 3)3  0.080

poly(lon,
3)3:poly(lat, 3)3  0.684       -0.180



Standardized
Within-Group Residuals:

         Min           Q1          Med           Q3          Max

-0.504980771 -0.000866948 
0.028470924  0.078583094
33.247831244



Number
of Observations: 2113

Number
of Groups: 74







gamm3<-try(gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),family="quasipoisson",
niterPQL=200))

  

>
summary(gamm3$gam)



Family:
quasipoisson

Link
function: log



Formula:

count
~ offset(offsetter) + s(lon, lat)



Parametric
coefficients:

  Estimate Std. Error t value Pr(>|t|)

X  1.31370   
0.09854   13.33    



>
summary(gamm3$lme)

Linear
mixed-effects model fit by maximum likelihood

 Data: data

       AIC     
BIC    logLik

  2808.398 2837.845 -1398.199



Random
effects:

 Formula: ~Xr.1 - 1 | g.1

 Structure: pdIdnot

           Xr.11    Xr.12   
Xr.13    Xr.14    Xr.15   
Xr.16    Xr.17    Xr.18

StdDev:
12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623

           Xr.19   Xr.110  
Xr.111   Xr.112   Xr.113  
Xr.114   Xr.115   Xr.116

StdDev:
12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623

          Xr.117   Xr.118  
Xr.119   Xr.120   Xr.121  
Xr.122   Xr.123   Xr.124

StdDev:
12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623

          Xr.125   Xr.126  
Xr.127

StdDev:
12.49623 12.49623 12.49623



 Formula: ~1 | code_tripnr %in% g.1

        (Intercept) Residual

StdDev:   0.8132693 5.077804



Variance
function:

 Structure: fixed weights

 Formula: ~invwt

Fixed
effects: list(fixed)

                    Value  Std.Error 
DF   t-value p-value

XX              1.3137042 0.09863463 923
13.318894  0.0000

Xs(lon,lat)Fx1
-0.4406352 0.23114503 923 -1.906315 
0.0569

Xs(lon,lat)Fx2
-0.6217519 0.24918031 923 -2.495189  0.0128

 Correlation:

               XX     X(,)F1

Xs(lon,lat)Fx1  0.015

Xs(lon,lat)Fx2
-0.009 -0.148



Standardized
Within-Group Residuals:

        Min          Q1         Med          Q3         Max

-3.42951750 -0.37448354 
0.06432438  0.53690322  8.62026552



Number
of Observations: 1000

Number
of Groups:

                 g.1 code_tripnr %in% g.1

                   1                   75

> 





----------------------------------------
> From: s.wood at bath.ac.uk
> To: r-help at r-project.org
> Date: Fri, 23 Jan 2009 11:32:21 +0000
> Subject: Re: [R] convergence problem gamm / lme
>
> Geert,
>
> Can you get a simpler model with, say, a quadratic dependence on lon, lat to
> converge, using glmmPQL? The answer might give a clue about whether the issue
> is related to using a smoother, or is something more basic.
>
> How confident are you that the Poisson assumption is reasonable?
>
> Can the model be fitted to a random subsample of the data, or does it always
> fail? PQL can fail to converge, but it's usually not as obstinate as it seems
> to be in this case, if the model structure is reasonable and identifiable.
>
> best,
> Simon
>
>
>
>
>
> On Thursday 22 January 2009 15:52, geert aarts wrote:
>> Hope one of you could help with the following question/problem:
>> We would like to explain the spatial
>> distribution of juvenile fish. We have 2135 records, from 75 vessels
>> (code_tripnr) and 7 to 39 observations for each vessel, hence the random
>> effect for code_tripnr. The offset (?offsetter?) accounts for the haul
>> duration and sub sampling factor. There are no extreme outliers in lat/lon.
>> The model we try to fit is:
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>> We tried several things. We added some
>> noise to lon and lat, modelled the density instead of using a count with
>> model offset, and we normalized the explanatory variables. We also changed
>> several settings (see models below).
>>
>>
>>
>> Interestingly, we do manage to fit a more
>> complex model:
>>
>> gamm2<-gamm(count~offset(offsetter)+
>> s(lat,lon,year,dayofyear), random=list(code_tripnr=~1),family="poisson",
>> correlation = corGaus(0.1, form=~lat + lon))
>>
>>
>>
>> The models are fitted using mgcv 1.4-1 and
>> R 2.7.1 on a 64Bits Debian OS.
>>
>>
>>
>> So there seems to be a convergence problem, correct? And does someone have
>> an idea what might cause this? Secondly are there some tricks/solutions.
>> E.g. perhaps we could use the results from the more complex model (gamm2
>> above), but I do not know exactly how. All help/advice would be greatly
>> appreciated.
>>
>>
>>
>> Kind regards, Geert
>>
>>
>>
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),
>> random=list(code_tripnr=~1),family="poisson", correlation = corExp(1,
>> form=~X + Y),nite
>>
>> rPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in recalc.corSpatial(object[[i]],
>> conLin) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(1,1)),random=list(code_
>>>tripnr=~1),family="poisson",
>>
>> niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in lme.formula(fixed = fixed, random
>> = random, data = data, correlation = correlation, :
>>
>> nlminb
>> problem, convergence error code = 1
>>
>>
>> message = false convergence (8)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>>
>>
>>
>>
>> .Options$mgcv.vc.logrange=0.001 # we also
>> tried higher settings
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200, control=lmeControl(opt="optim"))
>>
>>
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in optim(c(coef(lmeSt)),
>> function(lmePars) -logLik(lmeSt, lmePars),
>>
>>
>>
>> initial value in 'vmmin' is not finite
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200,control=lmeControl(minAbsParApV
>>
>> ar=0.0000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in recalc.corSpatial(object[[i]],
>> conLin) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(1,1)),random=list(code_tr
>>ipnr=~1),family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in lme.formula(fixed = fixed, random
>> = random, data = data, correlation = correlation, :
>>
>>
>> nlminb problem, convergence
>> error code = 1
>>
>>
>> message = false convergence (8)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 2: In smooth.construct.tp.smooth.spec(object,
>> dk$data, dk$knots) :
>>
>>
>> basis dimension, k, increased to minimum possible
>>
>>
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(8,8)),random=list(code_tr
>>ipnr=~1),family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in lme.formula(fixed = fixed, random
>> = random, data = data, correlation = correlation, :
>>
>>
>> nlminb problem, convergence
>> error code = 1
>>
>>
>> message = false convergence (8)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 2: In 1:UZ.len : numerical expression has 2
>> elements: only the first used
>>
>> 3: In if (p.rank> ncol(XZ)) p.rank
>> <- ncol(XZ) :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 4: In 1:p.rank : numerical expression has 2
>> elements: only the first used
>>
>> 5: In if (p.rank < k - j) Xf <- XZU[,
>> (p.rank + 1):(k - j), drop = FALSE] else Xf <- matrix(0, :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 6: In (p.rank + 1):(k - j) :
>>
>>
>> numerical expression has 2 elements: only the first used
>>
>> 7: In 1:p.rank : numerical expression has 2
>> elements: only the first used
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(4,4),fx=T),random=list(co
>>de_tripnr=~1),family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 2: In 1:UZ.len : numerical expression has 2
>> elements: only the first used
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+te(lon,lat),random=list(code_tripnr=~1)
>>,family="poisson", niterPQL=200,control=lmeControl(opt="opti
>>
>> m"))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in optim(c(coef(lmeSt)),
>> function(lmePars) -logLik(lmeSt, lmePars),
>>
>>
>>
>> initial value in 'vmmin' is not finite
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200,control=lmeControl(tolerance=
>>
>> 0.00000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1
>>>),family="poisson",
>>
>> niterPQL=200,control=lmeControl(niterEM=200))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(msTol=0.00000000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(.relStep=0.00000000000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(nlmStepMax=0.00000000000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(minAbsParApVar=0.0000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200, control=lmeControl(returnObject=T))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> Singularity in backsolve at level 0, block 1
>>
>> In addition: Warning messages:
>>
>> 1: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 2: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 3: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 4: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 5: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 6: In MEestimate(lmeSt, grps) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>>
>> _________________________________________________________________
>>
>>
>> [[alternative HTML version deleted]]
>
> --
>> Simon Wood, Mathematical Sciences, University of Bath, Bath, BA2 7AY UK
>> +44 1225 386603 www.maths.bath.ac.uk/~sw283
>

_________________________________________________________________
[[elided Yahoo spam]]
http://video.msn.com/video.aspx?mkt=nl-nl

------------------------------

Message: 122
Date: Thu, 29 Jan 2009 11:09:53 +0100
From: Petr PIKAL <petr.pikal at precheza.cz>
Subject: [R] Odp: Text in a character vector to indicate "ifelse"
	argument
To: joe1985 <johannes at dsr.life.ku.dk>
Cc: r-help at r-project.org
Message-ID:
	<OFFF65FBD8.BEBD7F83-ONC125754D.00363477-C125754D.0037C6AF at precheza.cz>
	
Content-Type: text/plain; charset="ISO-8859-1"

Hi

r-help-bounces at r-project.org napsal dne 29.01.2009 10:25:13:

> 
> Hello
> 
> I have a data set that looks like this; 
> 
> > b2
>           dato         chr                      status           PRRSvac
> PRRSsanVac PRRSsanDk PRRSdk
> 33  2007-12-03 090432                    R?d SPF 
> 34  2007-02-09 090432              R?d SPF+sanDK 
> 35  2002-12-17 090432                 R?d SPF+DK 
> 36  2002-11-27 090432              R?d SPF+sanDK 
> 37  2002-07-23 090432                 R?d SPF+DK 
> 38  2001-08-23 090432                    R?d SPF 
> 39  2000-01-01 090432          SPF-X,  PRRS-neg. 
> 40  1999-05-01 090432           MS-X,  PRRS-neg. 
> 81  2001-08-23 022458                    R?d SPF 
> 82  1999-01-22 022458          SPF-X,  PRRS-neg. 
> 130 2008-10-16 080385 R?d SPF+Myc+Ap2+Nys+DK+Vac 
> 131 2003-03-18 080385     R?d SPF+Myc+Ap2+DK+Vac 
> 132 2002-11-01 080385         R?d SPF+Myc+DK+Vac 
> 133 2002-02-07 080385            R?d SPF+Myc+Vac 
> 134 2000-09-19 080385         MS-X,  PRRS-pos VAC 
> 135 1999-01-22 080385            MS-X,  PRRS-neg 
> 176 2008-10-28 013168 R?d SPF+Myc+Ap2+Nys+DK+Vac 
> 177 2003-05-23 013168     R?d SPF+Myc+Ap2+DK+Vac 
> 178 2002-11-01 013168         R?d SPF+Myc+DK+Vac 
> 179 2001-07-03 013168            R?d SPF+Myc+Vac 
> 180 2000-09-01 013168         MS-X,  PRRS-pos VAC 
> 181 2000-06-02 013168            MS-X,  PRRS-neg 
> 182 2000-04-03 013168     SKM-X,  +Ap2,  PRRS-neg 
> 183 1999-01-22 013168            MS-X,  PRRS-neg 
> 
> Where I have used;
> 
> b2$PRRSvac <- ifelse(b2$status=='PRRS-pos VAC' | b2$status=='Vac',1,0)
> b2$PRRSdk <- ifelse(b2$status=='PRRS-pos DK' | b2$status=='DK',1,0)
> b2$PRRSsanVac <- ifelse(b2$status=='sanVac',1,0)
> b2$PRRSsanDk <- ifelse(b2$status=='sanDK',1,0)
> 
> to creat the last four variables, but it wont work!!! The variable 
status
> has class "character". 

What "wont work!!!" means

> zdrzeni
   sklon    ot   doba    typ     spolf    spol.f
1     35  3.00  70.00  stand  35.stand  35.stand
2     50 20.00   9.50  stand  50.stand  50.stand
3     50  5.00  29.50  stand  50.stand  50.stand
4     50 15.00  13.00  stand  50.stand  50.stand
....

> zdrzeni$v1<-ifelse(zdrzeni$typ=="stand"|zdrzeni$typ=="not", 1,0)
> zdrzeni
   sklon    ot   doba    typ     spolf    spol.f v1
1     35  3.00  70.00  stand  35.stand  35.stand  1
2     50 20.00   9.50  stand  50.stand  50.stand  1
3     50  5.00  29.50  stand  50.stand  50.stand  1
4     50 15.00  13.00  stand  50.stand  50.stand  1
....

obviously "works", so the problem is in your data and your use of "==".

ifelse(x=="abc", 1,0)

means that the result is 1 if x is exactly equivalent to "abc" and 0 if x 
is " abc", "def-abc" or in any other variation. You probably need to use 
grep and regexpr expression for test but it is not my cup of tea.

Regards
Petr


> 
> Can anyone help me?
> 
> -- 
> View this message in context: http://www.nabble.com/Text-in-a-character-
> vector-to-indicate-%22ifelse%22-argument-tp21722983p21722983.html
> Sent from the R help mailing list archive at Nabble.com.
> 
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.



------------------------------

Message: 123
Date: Thu, 29 Jan 2009 11:42:02 +0100
From: Sigbert Klinke <sigbert at wiwi.hu-berlin.de>
Subject: [R] Graphic device & graphics primitives
To: r-help at r-project.org
Message-ID: <498187FA.2080509 at wiwi.hu-berlin.de>
Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Hi,

I know that some graphics devices in R store graphics primitives such 
that a redraw is possible (e.g. when resizing the window). Is it 
possible to get the current number of stored graphic primitives?

Thanks in advance

Sigbert Klinke



------------------------------

_______________________________________________
R-help at r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

End of R-help Digest, Vol 71, Issue 29
**************************************


Disclaimer: http://www.kuleuven.be/cwis/email_disclaimer.htm




More information about the R-help mailing list