[R] Memory Efficiency of Symmetric Matrix
andrew
andrewjohnroyal at gmail.com
Wed Jan 7 02:17:49 CET 2009
the SparseM package might be what you are looking for
http://www.econ.uiuc.edu/~roger/research/sparse/SparseM.pdf
On Jan 7, 11:36 am, Søren Højsgaard <Soren.Hojsga... at agrsci.dk> wrote:
> You can do
> mat[lower.tri(mat, diag=F)]
> Søren
>
> ________________________________
>
> Fra: r-help-boun... at r-project.org på vegne af Nathan S. Watson-Haigh
> Sendt: on 07-01-2009 01:28
> Til: r-h... at r-project.org
> Emne: [R] Memory Efficiency of Symmetric Matrix
>
> -----BEGIN PGP SIGNED MESSAGE-----
> Hash: SHA1
>
> I'm generating a symmetric correlation matrix using a data matrix as input:
> mat <- cor(data.mat)
>
> My question is:
> Is there a more memory efficient way to store this data? For instance, since:
> all(mat == t(mat))
> every value is duplicated, and I should be able to almost half the memory usage for large matrices.
>
> Any thoughts/comments?
>
> Cheers,
> Nathan
>
> - --
> - --------------------------------------------------------
> Dr. Nathan S. Watson-Haigh
> OCE Post Doctoral Fellow
> CSIRO Livestock Industries
> Queensland Bioscience Precinct
> St Lucia, QLD 4067
> Australia
>
> Tel: +61 (0)7 3214 2922
> Fax: +61 (0)7 3214 2900
> Web:http://www.csiro.au/people/Nathan.Watson-Haigh.html
> - --------------------------------------------------------
>
> -----BEGIN PGP SIGNATURE-----
> Version: GnuPG v1.4.9 (MingW32)
> Comment: Using GnuPG with Mozilla -http://enigmail.mozdev.org<http://enigmail.mozdev.org/>
>
> iEYEARECAAYFAklj9yAACgkQ9gTv6QYzVL6MGQCg1CHsRGAwEMah/8ZuZ9QFI6O5
> lcIAnjZ68DE9FABLMd07A3AfdMPRpXIH
> =5bet
> -----END PGP SIGNATURE-----
>
> ______________________________________________
> R-h... at r-project.org mailing listhttps://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guidehttp://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
> ______________________________________________
> R-h... at r-project.org mailing listhttps://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guidehttp://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list