[R] large factorials
Martin Maechler
maechler at stat.math.ethz.ch
Thu Apr 23 10:45:07 CEST 2009
vQ> if you really really need to have it done from within r,
vQ> you may want to use an external facility such as bc, the
vQ> 'basic calculator' [1,2]. for example, use the
vQ> (experimental!) r-bc:
vQ> source('http://r-bc.googlecode.com/svn/trunk/R/bc.R')
vQ> (you can also download the zipped package which will
vQ> install on windows, where you're likely not to have bc
vQ> yet; see http://code.google.com/p/r-bc/downloads/)
vQ> # an intuitive but slow approach implemented mostly in r
vQ> # (alternatively, you may want to have it recursive)
vQ> factorial.r = function(n) {
vQ> result = bc(1)
vQ> while (n > 1) {
vQ> result = result*n
vQ> n = n-1 }
vQ> result }
vQ> # an alternative, faster approach implemented mostly in bc
vQ> factorial.bc = function(n)
vQ> bc(sprintf('define fact(n) { if (n < 2) return 1; return n *
vQ> fact(n-1) }; fact(%d)', n))
vQ> library(rbenchmark)
vQ> benchmark(replications=10, columns=c('test', 'elapsed'),
vQ> r=factorial.r(500),
vQ> bc=factorial.bc(500))
vQ> # test elapsed
vQ> # 2 bc 0.101
vQ> # 1 r 34.181
vQ> this gives you factorials for arbitrary input, but note that the result
vQ> is not an integer, but an object of class 'bc' backed by a *character
vQ> string*:
vQ> result = factorial.bc(10^4)
vQ> is(result)
vQ> # "bc"
vQ> nchar(result)
vQ> # 35660
vQ> vQ
vQ> [1] http://www.gnu.org/software/bc/manual/html_mono/bc.html
vQ> [2] http://www.opengroup.org/onlinepubs/9699919799/utilities/bc.html
yet another alternative for arbitrary precision computing with R
is using using the GMP(http://www.gmp.org/) - based
MPFR(http://www.mpfr.org/) with the R package Rmpfr from
R-forge, http://r-forge.r-project.org/projects/rmpfr/
[ Unfortunately, it seems that there's no DLL version of the MPFR
library available for windows, and so the R-forge (and
Win-builder.r-project.org) maintainers currently do not build
Windows versions of the Rmpfr R package. ]
For the present case this brings no big advantage, as indeed the
factorial is trivial using multiprecision *integer* arithmetic;
The big advantage of MPFR and Rmpfr is the availability of many
transcendtal functions in multiprecision (arbitrary precision)
arithmetic.
First note
> factorial
function (x)
gamma(x + 1)
Then
> install.packages("Rmpfr", repos="http://R-Forge.R-project.org")
> library(Rmpfr)
> gamma(as(1000,"mpfr"))
1 'mpfr' number of precision 128 bits
[1] 4.023872600770937735437024339230039857186e2564
> gamma(mpfr(1000, prec = 10000))
1 'mpfr' number of precision 10000 bits
[1] 402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
>
vQ> Murray Cooper wrote:
>> You don't say what the error was, for the R factorial function,
>> but it is probably irrelevant for your question.
>>
>> Factorials get to be big numbers rather quickly and unless you
>> are using a program that does arbitrary precission arithmetic
>> you will quickly exceed the precission limits, for storing a number.
>> If you have Maple, do 170! and count the number of digits in the
>> result. You will see what I mean.
>>
>> There are some tricks when working with large factorials, depending
>> on what you are doing with them. I'd first try the log factorial function
>> in R I think its called lfactorial. Just do a ?factorial and you'll find
>> documentation. If this doesn't work, for you, repost with a clear
>> description of what you're trying to do and someone may be able
>> to help.
>>
>> Murray M Cooper, Ph.D.
>> Richland Statistics
>> 9800 N 24th St
>> Richland, MI, USA 49083
>> Mail: richstat at earthlink.net
>>
>> ----- Original Message ----- From: "molinar" <sky2k2 at hotmail.com>
>> To: <r-help at r-project.org>
>> Sent: Wednesday, April 22, 2009 3:21 PM
>> Subject: [R] large factorials
>>
>>
>>>
>>> I am working on a project that requires me to do very large factorial
>>> evaluations. On R the built in factorial function and the one I created
>>> both are not able to do factorials over 170. The first gives an
>>> error and
>>> mine return Inf.
>>>
>>> Is there a way to have R do these larger calculations (the calculator in
>>> accessories can do 10000 factorial and Maple can do even larger)
>>> --
>>> View this message in context:
>>> http://www.nabble.com/large-factorials-tp23175816p23175816.html
>>> Sent from the R help mailing list archive at Nabble.com.
>>>
>>> ______________________________________________
>>> R-help at r-project.org mailing list
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide
>>> http://www.R-project.org/posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>>
>>
>> ______________________________________________
>> R-help at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
vQ> ______________________________________________
vQ> R-help at r-project.org mailing list
vQ> https://stat.ethz.ch/mailman/listinfo/r-help
vQ> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
vQ> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list