[R] AICs from lmer different with summary and anova
Michael Dewey
info at aghmed.fsnet.co.uk
Sun Apr 19 17:36:11 CEST 2009
At 16:22 15/04/2009, Jonathan Williams wrote:
>Dear R Helpers,
>
>I have noticed that when I use lmer to analyse data, the summary function
>gives different values for the AIC, BIC and log-likelihood compared with the
>anova function.
I do not think I have seen a reply to this.
What happens if you fit the models originally using ML rather than REML?
>Here is a sample program
>
>#make some data
>set.seed(1);
>datx=data.frame(array(runif(720),c(240,3),dimnames=list(NULL,c('x1','x2','y'
>))))
>id=rep(1:120,2); datx=cbind(id,datx)
>
>#give x1 a slight relation with y (only necessary to make the random effects
>non-zero in this artificial example)
>datx$x1=(datx$y*0.1)+datx$x1
>
>library(lme4)
>
>#fit the data
>fit0=lmer(y~x1+x2+(1|id), data=datx); print(summary(fit0),corr=F)
>fit1=lmer(y~x1+x2+(1+x1|id), data=datx); print(summary(fit1),corr=F)
>
>#compare the models
>anova(fit0,fit1)
>
>
>Now, look at the output, below. You can see that the AIC from
>"print(summary(fit0))" is 87.34, but the AIC for fit0 in "anova(fit0,fit1)"
>is 73.965. There are similar changes for the values of BIC and logLik.
>
>Am I doing something wrong, here? If not, which are the real AIC and logLik
>values for the different models?
>
>Thanks for your help,
>
>Jonathan Williams
>
>
>Output:-
>
> > fit0=lmer(y~x1+x2+(1|id), data=datx); print(summary(fit0),corr=F)
>Linear mixed model fit by REML
>Formula: y ~ x1 + x2 + (1 | id)
> Data: datx
> AIC BIC logLik deviance REMLdev
> 87.34 104.7 -38.67 63.96 77.34
>Random effects:
> Groups Name Variance Std.Dev.
> id (Intercept) 0.016314 0.12773
> Residual 0.062786 0.25057
>Number of obs: 240, groups: id, 120
>
>Fixed effects:
> Estimate Std. Error t value
>(Intercept) 0.50376 0.05219 9.652
>x1 0.08979 0.06614 1.358
>x2 -0.06650 0.06056 -1.098
> > fit1=lmer(y~x1+x2+(1+x1|id), data=datx); print(summary(fit1),corr=F)
>Linear mixed model fit by REML
>Formula: y ~ x1 + x2 + (1 + x1 | id)
> Data: datx
> AIC BIC logLik deviance REMLdev
> 90.56 114.9 -38.28 63.18 76.56
>Random effects:
> Groups Name Variance Std.Dev. Corr
> id (Intercept) 0.0076708 0.087583
> x1 0.0056777 0.075351 1.000
> Residual 0.0618464 0.248689
>Number of obs: 240, groups: id, 120
>
>Fixed effects:
> Estimate Std. Error t value
>(Intercept) 0.50078 0.05092 9.835
>x1 0.09236 0.06612 1.397
>x2 -0.06515 0.06044 -1.078
> > anova(fit0,fit1)
>Data: datx
>Models:
>fit0: y ~ x1 + x2 + (1 | id)
>fit1: y ~ x1 + x2 + (1 + x1 | id)
> Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
>fit0 5 73.965 91.368 -31.982
>fit1 7 77.181 101.545 -31.590 0.7839 2 0.6757
Michael Dewey
http://www.aghmed.fsnet.co.uk
More information about the R-help
mailing list