[R] Noobie ANOVA intercept question

AllenL allen.larocque at gmail.com
Wed Apr 1 19:44:33 CEST 2009


Dear R list,
I've been attempting to interpret the results from a three-way ANOVA. I
think I understand contrasts and the R defaults for these (treatment
contrasts). My question is: what is the intercept in this test? As far as I
can tell, its NOT the expected value of a point that belongs to the first
level of all three explanatory factors (because there is only one point that
satisfies these requirements and their values differ). Its not the grand
mean, or any of the treatment means. What is this thing?

(Note: this dataset is from an example I'm working through in Grafen & Hails
2002 text)

Q2: Just noticed that in pasting I lose mono-spaced formatting. Is it
possible to post to the list such that format is maintained?

Thanks in advance!



Relevant output:


> anova(mod1)
Analysis of Variance Table

Response: SQBLOOMS
          Df Sum Sq Mean Sq F value    Pr(>F)    
BED        2 4.1323  2.0661  9.4570 0.0007277 ***
WATER      2 3.7153  1.8577  8.5029 0.0013016 ** 
SHADE      3 1.6465  0.5488  2.5120 0.0789451 .  
Residuals 28 6.1173  0.2185                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
> summary(mod1)

Call:
lm(formula = SQBLOOMS ~ BED + WATER + SHADE)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.23992 -0.18979 -0.01840  0.17471  0.74686 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   3.7765     0.2203  17.139 2.23e-16 ***
BED2          0.3185     0.1908   1.669 0.106242    
BED3         -0.5044     0.1908  -2.643 0.013293 *  
WATER2        0.7842     0.1908   4.109 0.000313 ***
WATER3        0.4489     0.1908   2.353 0.025905 *  
SHADE2        0.1969     0.2203   0.894 0.379172    
SHADE3       -0.2157     0.2203  -0.979 0.336068    
SHADE4       -0.3673     0.2203  -1.667 0.106641    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.4674 on 28 degrees of freedom
  (51 observations deleted due to missingness)
Multiple R-squared: 0.6081,     Adjusted R-squared: 0.5102 
F-statistic: 6.208 on 7 and 28 DF,  p-value: 0.0001911 

> model.frame(mod1)
   SQBLOOMS BED WATER SHADE
1     4.359   1     1     1
2     3.317   1     1     2
3     3.606   1     1     3
4     4.123   1     1     4
5     4.472   1     2     1
6     4.583   1     2     2
7     4.359   1     2     3
8     4.690   1     2     4
9     4.123   1     3     1
10    4.123   1     3     2
11    3.464   1     3     3
12    3.873   1     3     4
13    3.606   2     1     1
14    4.000   2     1     2
15    3.464   2     1     3
16    3.873   2     1     4
17    4.690   2     2     1
18    5.000   2     2     2
19    5.385   2     2     3
20    4.583   2     2     4
21    4.690   2     3     1
22    4.690   2     3     2
23    4.690   2     3     3
24    4.243   2     3     4
25    3.317   3     1     1
26    3.606   3     1     2
27    3.317   3     1     3
28    2.828   3     1     4
29    3.873   3     2     1
30    5.000   3     2     2
31    3.742   3     2     3
32    2.449   3     2     4
33    4.000   3     3     1
34    4.583   3     3     2
35    3.162   3     3     3
36    3.162   3     3     4


> model.tables(mod1,"means",se=TRUE)
Tables of means
Grand mean
         
4.029028 

 BED 
BED
    1     2     3 
4.091 4.409 3.587 

 WATER 
WATER
    1     2     3 
3.618 4.402 4.067 

 SHADE 
SHADE
    1     2     3     4 
4.126 4.322 3.910 3.758 

Standard errors for differences of means
           BED  WATER  SHADE
        0.1908 0.1908 0.2203
replic.     12     12      9

 


Design matrix:
> model.matrix(mod1)
   (Intercept) BED2 BED3 WATER2 WATER3 SHADE2 SHADE3 SHADE4
1            1    0    0      0      0      0      0      0
2            1    0    0      0      0      1      0      0
3            1    0    0      0      0      0      1      0
4            1    0    0      0      0      0      0      1
5            1    0    0      1      0      0      0      0
6            1    0    0      1      0      1      0      0
7            1    0    0      1      0      0      1      0
8            1    0    0      1      0      0      0      1
9            1    0    0      0      1      0      0      0
10           1    0    0      0      1      1      0      0
11           1    0    0      0      1      0      1      0
12           1    0    0      0      1      0      0      1
13           1    1    0      0      0      0      0      0
14           1    1    0      0      0      1      0      0
15           1    1    0      0      0      0      1      0
16           1    1    0      0      0      0      0      1
17           1    1    0      1      0      0      0      0
18           1    1    0      1      0      1      0      0
19           1    1    0      1      0      0      1      0
20           1    1    0      1      0      0      0      1
21           1    1    0      0      1      0      0      0
22           1    1    0      0      1      1      0      0
23           1    1    0      0      1      0      1      0
24           1    1    0      0      1      0      0      1
25           1    0    1      0      0      0      0      0
26           1    0    1      0      0      1      0      0
27           1    0    1      0      0      0      1      0
28           1    0    1      0      0      0      0      1
29           1    0    1      1      0      0      0      0
30           1    0    1      1      0      1      0      0
31           1    0    1      1      0      0      1      0
32           1    0    1      1      0      0      0      1
33           1    0    1      0      1      0      0      0
34           1    0    1      0      1      1      0      0
35           1    0    1      0      1      0      1      0
36           1    0    1      0      1      0      0      1

-- 
View this message in context: http://www.nabble.com/Noobie-ANOVA-intercept-question-tp22831838p22831838.html
Sent from the R help mailing list archive at Nabble.com.




More information about the R-help mailing list