[R] FW: logistic regression

Darin Brooks kfmgis at telus.net
Sat Sep 27 15:44:29 CEST 2008


Sorry.

Let me try again then.

I am trying to find "significant" predictors" from a list of about 44
independent variables.  So I started with all 44 variables and ran
drop1(sep22lr, test="Chisq")... and then dropped the highest p value from
the run.  Then I reran the drop1.  

Model:
MIN_Mstocked ~ ORG_CODE + BECLBL08 + PEM_SScat + SOIL_MST_1 + 
    SOIL_NUTR + cE + cN + cELEV + cDIAM_125 + cCRCLS + cCULM_125 + 
    cSPH + cAGE + cVRI_NONPINE + cVRI_nonpineCFR + cVRI_BLEAF + 
    cvol_125 + cstrDST_SW + cwaterDST_SW + cSEEDSRCE_SW + cMAT + 
    cMWMT + cMCMT + cTD + cMAP + cMSP + cAHM + cSHM + cMATMAP + 
    cddless0 + cddless18 + cddgrtr0 + cddgrtr18 + cNFFD + cbFFP + 
    ceFFP + cPAS + cDD5_100 + cEXT_Cold + cS_INDX
                Df Deviance    AIC    LRT   Pr(Chi)    
<none>               814.21 938.21                     
ORG_CODE         4   824.97 940.97  10.76 0.0294100 *  
BECLBL08         9   845.61 951.61  31.41 0.0002519 ***
PEM_SScat       10   829.11 933.11  14.90 0.1357580    
SOIL_MST_1       1   814.63 936.63   0.43 0.5135094    
SOIL_NUTR        2   818.49 938.49   4.28 0.1175411    
cE               1   814.37 936.37   0.16 0.6886085    
cN               1   814.40 936.40   0.20 0.6566765    
cELEV            1   814.35 936.35   0.14 0.7044864    
cDIAM_125        1   817.98 939.98   3.78 0.0519554 .  
cCRCLS           1   819.32 941.32   5.11 0.0237598 *  
cCULM_125        1   816.17 938.17   1.97 0.1606846    
cSPH             1   816.62 938.62   2.41 0.1204141    
cAGE             1   815.92 937.92   1.72 0.1902314    
cVRI_NONPINE     1   818.04 940.04   3.84 0.0501149 .  
cVRI_nonpineCFR  1   821.17 943.17   6.96 0.0083197 ** 
cVRI_BLEAF       1   818.78 940.78   4.58 0.0324286 *  
cvol_125         1   814.67 936.67   0.47 0.4949495    
cstrDST_SW       1   814.63 936.63   0.42 0.5169757    
cwaterDST_SW     1   814.75 936.75   0.55 0.4592643    
cSEEDSRCE_SW     1   817.73 939.73   3.53 0.0604234 .  
cMAT             1   814.27 936.27   0.06 0.8002333    
cMWMT            1   814.49 936.49   0.28 0.5942246    
cMCMT            1   819.39 941.39   5.18 0.0228425 *  
cTD              1   816.20 938.20   1.99 0.1580332    
cMAP             1   814.25 936.25   0.04 0.8386626    
cMSP             1   818.41 940.41   4.20 0.0404411 *  
cAHM             1   815.66 937.66   1.46 0.2276311    
cSHM             1   819.95 941.95   5.75 0.0165227 *  
cMATMAP          1   814.91 936.91   0.71 0.4001878    
cddless0         1   818.04 940.04   3.83 0.0502153 .  
cddless18        1   817.81 939.81   3.60 0.0576931 .  
cddgrtr0         1   816.64 938.64   2.44 0.1184235    
cddgrtr18        1   815.77 937.77   1.57 0.2104958    
cNFFD            1   815.38 937.38   1.18 0.2782582    
cbFFP            1   814.39 936.39   0.18 0.6677481    
ceFFP            1   820.22 942.22   6.01 0.0141863 *  
cPAS             1   814.21 936.21   0.01 0.9347654    
cDD5_100         1   814.79 936.79   0.58 0.4447531    
cEXT_Cold        1   816.99 938.99   2.78 0.0954512 .  
cS_INDX          1   815.21 937.21   1.01 0.3157208    


And then systematically reran the drop1, removing the HIGHEST p value (least
significant)from each resultant until only significant (0.10) variables
remained.

Model:
MIN_Mstocked ~ ORG_CODE + BECLBL08 + PEM_SScat + SOIL_NUTR + 
    cSEEDSRCE_SW + cMSP + ceFFP + cEXT_Cold
             Df Deviance    AIC    LRT   Pr(Chi)    
<none>            884.20 946.20                     
ORG_CODE      4   916.38 970.38  32.18 1.757e-06 ***
BECLBL08      9   940.66 984.66  56.46 6.418e-09 ***
PEM_SScat    11   906.20 946.20  22.00 0.0243795 *  
SOIL_NUTR     2   894.19 952.19   9.99 0.0067557 ** 
cSEEDSRCE_SW  1   894.41 954.41  10.21 0.0013983 ** 
cMSP          1   896.97 956.97  12.77 0.0003516 ***
ceFFP         1   928.50 988.50  44.30 2.812e-11 ***
cEXT_Cold     1   923.35 983.35  39.15 3.921e-10 ***


I didn't create any kind of dummy or factor variables for my categorical
data (at least, not on purpose).

With a remaining 8 variables, I tried to run a logistic regression (glm)
against my dependent variable(MIN_Mstocked).  When I do a summary of the
glm, I am provided with the usual table of estimate, std error, z value, and
Pr(>|z|)... BUT there are some coefficients missing in the list.  None of
the categorical data is complete.  Some are missing only one category, while
others are missing 4 or 5 categories.  

e.g.

Coefficients:
                       Estimate Std. Error z value Pr(>|z|)    
(Intercept)          -1.324e+02  1.363e+03  -0.097 0.922611    
ORG_CODE[T.DLA]      -1.504e+01  1.363e+03  -0.011 0.991192    
ORG_CODE[T.DMO]      -1.494e+01  1.363e+03  -0.011 0.991253    
ORG_CODE[T.DPG]      -1.766e+01  1.363e+03  -0.013 0.989658    
ORG_CODE[T.DVA]      -1.841e+01  1.363e+03  -0.014 0.989220    
BECLBL08[T.SBS dw 2] -6.733e-01  5.903e-01  -1.141 0.254033    
BECLBL08[T.SBS dw 3] -1.094e+00  5.714e-01  -1.914 0.055586 .  
BECLBL08[T.SBS mc 2]  1.573e-01  5.004e-01   0.314 0.753211    
BECLBL08[T.SBS mc 3]  1.402e+00  5.824e-01   2.408 0.016043 *  
BECLBL08[T.SBS mk 1] -2.388e+00  7.529e-01  -3.172 0.001514 ** 
BECLBL08[T.SBS mw]   -1.672e+01  1.393e+03  -0.012 0.990425    
BECLBL08[T.SBS vk]   -1.614e+01  1.243e+03  -0.013 0.989640    
BECLBL08[T.SBS wk 1] -3.640e+00  8.174e-01  -4.453 8.48e-06 ***
BECLBL08[T.SBS wk 3] -1.838e+01  1.363e+03  -0.013 0.989240    
PEM_SScat[T.B]       -1.815e+01  3.956e+03  -0.005 0.996339    
PEM_SScat[T.C]        1.998e-01  3.925e-01   0.509 0.610792    
PEM_SScat[T.D]       -2.314e-01  3.215e-01  -0.720 0.471621    
PEM_SScat[T.E]        5.581e-01  3.433e-01   1.626 0.104020    
PEM_SScat[T.F]       -1.113e+00  5.782e-01  -1.926 0.054153 .  
PEM_SScat[T.G]        1.780e-01  4.420e-01   0.403 0.687150    
PEM_SScat[T.H]        1.670e+01  3.956e+03   0.004 0.996633    
PEM_SScat[T.I]        2.751e-01  9.313e-01   0.295 0.767705    
PEM_SScat[T.J]       -2.623e-01  9.693e-01  -0.271 0.786649    
PEM_SScat[T.K]       -1.862e+01  3.956e+03  -0.005 0.996244    
PEM_SScat[T.L]       -1.661e+01  1.211e+03  -0.014 0.989056    
SOIL_NUTR[T.C]       -1.119e+00  3.781e-01  -2.960 0.003073 ** 
SOIL_NUTR[T.D]       -7.912e-02  9.049e-01  -0.087 0.930320    
cSEEDSRCE_SW         -1.512e-03  4.930e-04  -3.066 0.002170 ** 
cMSP                  1.808e-02  5.304e-03   3.409 0.000652 ***
ceFFP                 2.889e-01  4.662e-02   6.196 5.80e-10 ***
cEXT_Cold            -1.880e+00  3.330e-01  -5.647 1.63e-08 ***

There should be a PEM_Sscat[T.A].  It is the most prevalent occurrence in
this category.

ORG_CODE is missing more than 6 categories in the list

SOIL_NUTR should have a [T.B]

Does that help? 

-----Original Message-----
From: Kevin E. Thorpe [mailto:kevin.thorpe at utoronto.ca] 
Sent: Saturday, September 27, 2008 6:21 AM
To: Darin Brooks
Cc: r-help at r-project.org
Subject: Re: [R] logistic regression


Darin Brooks wrote:
> Good afternoon
>  
> I have what I hope is a simple logistic regression issue.
>  
> I started with 44 independent variables and then used the drop1, 
> test="chisq" to reduce the list to 8 significant independent variables.
>  
> drop1(sep22lr, test="Chisq") and wound up with this model:
>  
> Model: MIN_Mstocked ~ ORG_CODE + BECLBL08 + PEM_SScat + SOIL_NUTR + 
> cSEEDSRCE_SW + cMSP + ceFFP + cEXT_Cold
>  
> 4 of the remaining variables are categorical and 4 are continuous.
>  
> However, when I run a glm and then a summary on the glm - some of the 
> categorical data is missing from the output.
>  
> The PEM_SScat is missing only one variable ... the BECLBL08 is missing 
> several variables ... the ORG_CODE is missing 4 .. and the SOIL_NUTR 
> is missing 1 variable.
>  
> It seems arbitrary to the number of variables missing.  Is there 
> something wrong with my syntax in calling the logistic model?  Am I not
understanding
> the inputs correctly?   
>  
> Any help would be appreciated.
>  

I'm not sure I fully understand your question.  It sounds like you created
your own dummy variables for your categorical variables. Did you?  Or did
you use factor variables for your categorical variables?
If the latter, then I REALLY don't understand your question.

Kevin

--
Kevin E. Thorpe
Biostatistician/Trialist, Knowledge Translation Program Assistant Professor,
Dalla Lana School of Public Health University of Toronto
email: kevin.thorpe at utoronto.ca  Tel: 416.864.5776  Fax: 416.864.6057 No
virus found in this incoming message.
Checked by AVG - http://www.avg.com

6:55 PM



More information about the R-help mailing list