[R] Genmod in SAS vs. glm in R

Peter Dalgaard p.dalgaard at biostat.ku.dk
Wed Sep 10 07:42:22 CEST 2008


Rolf Turner wrote:
>
> For one thing your call to glm() is wrong --- didn't you notice the
> warning messages about ``non-integer #successes in a binomial glm!''?
>
> You need to do either:
>
> glm(r/k ~ x, family=binomial(link='cloglog'), data=bin_data, 
> offset=log(y), weights=k)
>
> or:
>
> glm(cbind(r,k-r) ~ x, family=binomial(link='cloglog'), data=bin_data, 
> offset=log(y))
>
> You get the same answer with either, but this answer still does not 
> agree with your
> SAS results.  Perhaps you have an error in your SAS syntax as well.  I 
> wouldn't know.
The data created in the data step are not those used in the analysis. 
Changing to

data nelson;
<etc>

gives the same result as  R on the versions I have available:

                                                  Analysis Of Parameter Estimates
 
                                                     Standard     Wald 95% Confidence       Chi-
                      Parameter    DF    Estimate       Error           Limits            Square    Pr > ChiSq

                      Intercept     1     -3.5866      2.2413     -7.9795      0.8064       2.56        0.1096
                      x             1      0.9544      2.8362     -4.6046      6.5133       0.11        0.7365
                      Scale         0      1.0000      0.0000      1.0000      1.0000                         


and 

Call:
glm(formula = r/k ~ x, family = binomial(link = "cloglog"), data = bin_data, 
    weights = k, offset = log(y))

Deviance Residuals: 
      1        2        3        4  
 0.5407  -0.9448  -1.0727   0.7585  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  -3.5866     2.2413  -1.600    0.110
x             0.9544     2.8362   0.336    0.736


>
>     cheers,
>
>         Rolf Turner
>
>     
> On 10/09/2008, at 10:37 AM, sandsky wrote:
>
>>
>> Hello,
>>
>> I have different results from these two softwares for a simple 
>> binomial GLM
>> problem.
>>> From Genmod in SAS: LogLikelihood=-4.75, coeff(intercept)=-3.59,
>> coeff(x)=0.95
>>> From glm in R: LogLikelihood=-0.94, coeff(intercept)=-3.99, 
>>> coeff(x)=1.36
>>
>> Is there anyone tell me what I did wrong?
>>
>> Here are the code and results,
>>
>> 1) SAS Genmod:
>>
>> % r: # of failure
>> % k: size of a risk set
>>
>> data bin_data;
>> input r k y x;
>> os=log(y);
>> cards;
>> 1    3    5    0.5
>> 0    2    5    0.5
>> 0    2    4    1.0
>> 1    2    4    1.0
>> ;
>> proc genmod data=nelson;
>>     model r/k = x /     dist = binomial     link =cloglog   offset = 
>> os ;
>>
>>      <Results from SAS>
>>
>>     Log Likelihood                       -4.7514
>>
>>     Parameter    DF    Estimate       Error           Limits
>> Square    Pr > ChiSq
>>
>>     Intercept     1     -3.6652      1.9875     -7.5605      0.2302
>> 3.40        0.0652
>>     x                1      0.8926      2.4900     -3.9877      5.7728
>> 0.13        0.7200
>>     Scale          0      1.0000      0.0000      1.0000      1.0000
>>
>>
>>
>> 2) glm in R
>>
>> bin_data <-
>> data.frame(cbind(y=c(5,5,4,4),r=c(1,0,0,1),k=c(3,2,2,2),x=c(0.5,0.5,1.0,1.0))) 
>>
>> glm(r/k ~ x, family=binomial(link='cloglog'), data=bin_data, 
>> offset=log(y))
>>
>>      <Results from R>
>>     Coefficients:
>>     (Intercept)            x
>>         -3.991        1.358
>>
>>     'log Lik.' -0.9400073 (df=2)
>
> ######################################################################
> Attention:\ This e-mail message is privileged and confid...{{dropped:9}}
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.


-- 
   O__  ---- Peter Dalgaard             Øster Farimagsgade 5, Entr.B
  c/ /'_ --- Dept. of Biostatistics     PO Box 2099, 1014 Cph. K
 (*) \(*) -- University of Copenhagen   Denmark      Ph:  (+45) 35327918
~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk)              FAX: (+45) 35327907



More information about the R-help mailing list