[R] nls convergence trouble
Benoit Boulinguiez
benoit.boulinguiez at ensc-rennes.fr
Thu Sep 4 12:11:27 CEST 2008
Hi,
I agree with you that Excel is not the best tool for fittings, that's why I
try to handle R.
But I need to use this specific model ("LgmAltFormula") and not a polynomial
expression with the different parameters even if your method produced
correct fitting.
The parameters "a" and "b" are the Langmuir parameters that describe the
adsorption of a compound onto activated carbon. I need to assess these
parameters.
Regards/Cordialement
Benoit Boulinguiez
-----Message d'origine-----
De : Petr PIKAL [mailto:petr.pikal at precheza.cz]
Envoyé : mercredi 3 septembre 2008 17:58
À : Benoit Boulinguiez
Cc : r-help at r-project.org
Objet : Odp: [R] nls convergence trouble
Hi
Excel fit is not exceptionally good. Try
fff<-function(a,b) (V + b * m * a + C0 * V * b - ((C0 * V * b)^2 + 2 * C0
*
+ b * V^2 - 2 * C0 * V * m * a * b^2 + V^2 + 2 * V * m * a *
+ b + (b * m * a)^2)^(1/2))/(2 * b * m)
and with attached data frame
plot(Qe,fff(364,0.0126))
abline(0,1)
you clearly see linear relationship in smaller values but quite chaotic
behaviour in bigger ones (or big deviation of experimental points from
your model).
So it is up to you if you want any fit (like from Excel) or only a good
one (like from R).
Seems to me that simple linear could be quite a good choice although there
is some nelinearity.
fit<-lm(Qe~Ce+C0+V+m)
summary(fit)
Call:
lm(formula = Qe ~ Ce + C0 + V + m)
Residuals:
Min 1Q Median 3Q Max
-16.654 -8.653 2.426 9.971 11.912
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.148e+02 1.330e+03 -0.613 0.549254
Ce -6.894e-02 4.982e-03 -13.839 6.02e-10 ***
C0 3.284e-02 1.676e-03 19.589 4.26e-12 ***
V 2.153e+06 4.607e+05 4.674 0.000300 ***
m -4.272e+04 1.218e+04 -3.509 0.003167 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 10.87 on 15 degrees of freedom
Multiple R-squared: 0.9903, Adjusted R-squared: 0.9877
F-statistic: 381.3 on 4 and 15 DF, p-value: 6.91e-15
plot(predict(fit), Qe)
abline(0,1)
Regards
Petr
r-help-bounces at r-project.org napsal dne 03.09.2008 16:01:36:
> Hi,
>
> Parameters assessment in R with nls doesn't work, though it works fine
with
> MS Excel with the internal solver :(
>
>
> I use nls in R to determine two parameters (a,b) from experimental data.
>
> m V C0 Ce Qe
> 1 0.0911 0.0021740 3987.581 27.11637 94.51206
> 2 0.0911 0.0021740 3987.581 27.41915 94.50484
> 3 0.0911 0.0021740 3987.581 27.89362 94.49352
> 4 0.0906 0.0021740 5981.370 82.98477 189.37739
> 5 0.0906 0.0021740 5981.370 84.46435 189.34188
> 6 0.0906 0.0021740 5981.370 85.33213 189.32106
> 7 0.0911 0.0021740 7975.161 192.54276 233.30310
> 8 0.0911 0.0021740 7975.161 196.52891 233.20797
> 9 0.0911 0.0021740 7975.161 203.07467 233.05176
> 10 0.0906 0.0021872 9968.951 357.49157 328.29824
> 11 0.0906 0.0021872 9968.951 368.47609 328.03306
> 12 0.0906 0.0021872 9968.951 379.18904 327.77444
> 13 0.0904 0.0021740 13956.532 1382.61955 350.33391
> 14 0.0904 0.0021740 13956.532 1389.64915 350.16485
> 15 0.0904 0.0021740 13956.532 1411.87726 349.63030
> 16 0.0902 0.0021740 15950.322 2592.90486 367.38460
> 17 0.0902 0.0021740 15950.322 2606.34599 367.06064
> 18 0.0902 0.0021740 15950.322 2639.54301 366.26053
> 19 0.0906 0.0021872 17835.817 3894.12224 336.57036
> 20 0.0906 0.0021872 17835.817 3950.35273 335.21289
> 21 0.0906 0.0021872 17835.817 3972.29367 334.68320
>
> the model "LgmAltformula" is
>
> Qe ~ (V + b * m * a + C0 * V * b - ((C0 * V * b)^2 + 2 * C0 *
> b * V^2 - 2 * C0 * V * m * a * b^2 + V^2 + 2 * V * m * a *
> b + (b * m * a)^2)^(1/2))/(2 * b * m)
>
> the command in R is
>
>
>
nls(formula=LgmAltFormula,data=bois.DATA,start=list(a=300,b=0.01),trace=TRUE
> ,control=nls.control(minFactor=0.000000009))
>
> R has difficulties to converge and stops after the maximum of iterations
>
> 64650.47 : 2.945876e+02 3.837609e+08
> 64650.45 : 2.945876e+02 4.022722e+09
> 64650.45 : 2.945876e+02 1.695669e+09
> 64650.45 : 2.945876e+02 5.103971e+08
> 64650.44 : 2.945876e+02 8.497431e+08
> 64650.41 : 2.945876e+02 1.515243e+09
> 64650.36 : 2.945877e+02 5.482744e+09
> 64650.36 : 2.945877e+02 2.152294e+09
> 64650.36 : 2.945877e+02 7.953167e+08
> 64650.35 : 2.945877e+02 7.625555e+07
> Erreur dans nls(formula = LgmAltFormula, data = bois.DATA, start =
list(a =
> 300, :
> le nombre d'itérations a dépassé le maximum de 50
>
>
> The parameters "a" and "b" are estimated to be 364 and 0.0126 with Excel
> with the same data set.
> I tried with the algorithm="port" with under and upper limits. One of
the
> parameter reaches the limit and the regression stops.
>
> How can I succeed with R to make this regression?
>
>
> Regards/Cordialement
>
> -------------
> Benoit Boulinguiez
> Ph.D
> Ecole de Chimie de Rennes (ENSCR) Bureau 1.20
> Equipe CIP UMR CNRS 6226 "Sciences Chimiques de Rennes"
> Campus de Beaulieu, 263 Avenue du Général Leclerc
> 35700 Rennes, France
> Tel 33 (0)2 23 23 80 83
> Fax 33 (0)2 23 23 81 20
> http://www.ensc-rennes.fr/
>
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list