[R] ANCOVA/glm missing/ignored interaction combinations

ONKELINX, Thierry Thierry.ONKELINX at inbo.be
Wed Sep 3 16:02:58 CEST 2008


Lara,

The first category is nor missing, nor ignored. It is used as the
reference. So the temperature effect for semio1 is only temperature. The
temperature effect for semio2 is temperature + temperature:semio2. For
semio3 it is temperature + temperature:semio3. Hence the main effect of
temperature is NOT the overall effect of temperature but the effect for
the reference category (in your case semio1).

It looks like you need to do some reading on ?contrasts and
?contr.treatment

HTH,

Thierry


------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature
and Forest
Cel biometrie, methodologie en kwaliteitszorg / Section biometrics,
methodology and quality assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium 
tel. + 32 54/436 185
Thierry.Onkelinx op inbo.be 
www.inbo.be 

To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher

The plural of anecdote is not data.
~ Roger Brinner

The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey

-----Oorspronkelijk bericht-----
Van: r-help-bounces op r-project.org [mailto:r-help-bounces op r-project.org]
Namens lara harrup (IAH-P)
Verzonden: woensdag 3 september 2008 10:47
Aan: r-help op r-project.org
Onderwerp: [R] ANCOVA/glm missing/ignored interaction combinations

Hi

I am using R version 2.7.2. on a windows XP OS and have a question
concerning an analysis of covariance with count data I am trying to do,
I will give details of a scaled down version of the analysis (as I have
more covariates and need to take account of over-dispersion etc etc) but
as I am sure it is only a simple problem but I just can't see how to fix
it.

I have a data set with count data as the response (total) and two
continuous covariates and one categorical explanatory variable (semio).
When I run the following lines, after loading the data and assigning
'semio' as a factor, taking into account that I want to consider two way
interactions:

> model.a<-glm(total~(temperature+humidity+semio)^2,family=poisson)
> summary(model.a)

I get the output below. But not all interactions are listed there are 4
semio categories, 1,2,3 and 4 but only 2,3,and 4 are listed in the
summary (semio2,semio3,semio4). And I cant for the life of me work out
why category one (semio1) is being ignored, missing etc.

Any help or suggestions would be most appreciated. Thanks in advance

Lara
lara.harrup op bbsrc.ac.uk

Call:
glm(formula = total ~ (temperature + humidity + semio)^2, family =
poisson)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-22.212   -5.132   -2.484    3.200   18.793 

Coefficients:
                      Estimate Std. Error z value Pr(>|z|)    
(Intercept)          23.848754   2.621291   9.098  < 2e-16 ***
temperature          -1.038284   0.150465  -6.901 5.18e-12 ***
humidity             -0.264912   0.033928  -7.808 5.81e-15 ***
semio2               22.852664   1.291806  17.690  < 2e-16 ***
semio3                3.699901   1.349007   2.743   0.0061 ** 
semio4               -1.851163   1.585997  -1.167   0.2431    
temperature:humidity  0.012983   0.001983   6.545 5.94e-11 ***
temperature:semio2   -0.870430   0.037602 -23.149  < 2e-16 ***
temperature:semio3   -0.060846   0.038677  -1.573   0.1157    
temperature:semio4    0.055288   0.046137   1.198   0.2308    
humidity:semio2      -0.114718   0.013369  -8.581  < 2e-16 ***
humidity:semio3      -0.031692   0.013794  -2.298   0.0216 *  
humidity:semio4       0.008425   0.016020   0.526   0.5990    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 10423.5  on 47  degrees of freedom Residual deviance:
2902.2  on 35  degrees of freedom
AIC: 3086.4

Number of Fisher Scoring iterations: 7

______________________________________________
R-help op r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document.%CRLF%The views expressed in  this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document%CRLF%



More information about the R-help mailing list