[R] dynlm and lm: should they give same estimates?
Werner Wernersen
pensterfuzzer at yahoo.de
Thu Oct 16 00:10:09 CEST 2008
Hi,
I was wondering why the results from lm and dynlm are not the same for what I think is the same model.
I have just modified example 4.2 from the Pfaff book, please see below for the code and results.
Can anyone tell my what I am doing wrongly?
Many thanks,
Werner
set.seed(123456)
e1 <- rnorm(100)
e2 <- rnorm(100)
y1 <- ts(cumsum(e1))
y2 <- ts(0.6*y1 + e2)
lr.reg <- lm(y2 ~ y1)
error <- ts(residuals(lr.reg))
error.lagged <- error[-c(99, 100)]
dy1 <- diff(y1)
dy2 <- diff(y2)
diff.dat <- data.frame(embed(cbind(dy1, dy2), 2))
colnames(diff.dat) <- c('dy1', 'dy2', 'dy1.1', 'dy2.1')
ecm.reg <- lm(dy2 ~ error.lagged + dy1.1 + dy2.1,
data=diff.dat)
ecm.dynreg <- dynlm(d(y2) ~ L(error) + L(d(y1),1) + L(d(y2),1))
summary(ecm.reg)
summary(ecm.dynreg)
> summary(ecm.reg)
Call:
lm(formula = dy2 ~ error.lagged + dy1.1 + dy2.1, data = diff.dat)
Residuals:
Min 1Q Median 3Q Max
-2.9588 -0.5439 0.1370 0.7114 2.3065
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.003398 0.103611 0.033 0.974
error.lagged -0.968796 0.158554 -6.110 2.24e-08 ***
dy1.1 0.808633 0.112042 7.217 1.35e-10 ***
dy2.1 -1.058913 0.108375 -9.771 5.64e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.026 on 94 degrees of freedom
Multiple R-Squared: 0.5464, Adjusted R-squared: 0.5319
F-statistic: 37.74 on 3 and 94 DF, p-value: 4.243e-16
> summary(ecm.dynreg)
Time series regression with "ts" data:
Start = 3, End = 100
Call:
dynlm(formula = d(y2) ~ L(error) + L(d(y1), 1) + L(d(y2), 1))
Residuals:
Min 1Q Median 3Q Max
-2.9588 -0.5439 0.1370 0.7114 2.3065
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.003398 0.103611 0.033 0.9739
L(error) -0.968796 0.158554 -6.110 2.24e-08 ***
L(d(y1), 1) 0.245649 0.126996 1.934 0.0561 .
L(d(y2), 1) -0.090117 0.105938 -0.851 0.3971
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.026 on 94 degrees of freedom
Multiple R-Squared: 0.5464, Adjusted R-squared: 0.5319
F-statistic: 37.74 on 3 and 94 DF, p-value: 4.243e-16
>
More information about the R-help
mailing list