[R] help about how can R compute AIC?
Prof Brian Ripley
ripley at stats.ox.ac.uk
Tue Oct 14 18:57:33 CEST 2008
On Tue, 14 Oct 2008, Arnau Mir Torres wrote:
>
> El 14/10/2008, a las 18:05, Martin Maechler escribió:
>
>>>>>>> "AMT" == Arnau Mir Torres <arnau.mir at uib.es>
>>>>>>> on Tue, 14 Oct 2008 17:13:01 +0200 writes:
>>>>>>> "AMT" == Arnau Mir Torres <arnau.mir at uib.es>
>>>>>>> on Tue, 14 Oct 2008 17:13:01 +0200 writes:
>>
>> AMT> Hello.
>>
>> AMT> I need to know how can R compute AIC when I study a regression
>> model?
Out of curiosity, why do you 'need' to know?
>> AMT> For example, if I use these data:
>> AMT> growth tannin
>> AMT> 1 12 0
>> AMT> 2 10 1
>> AMT> 3 8 2
>> AMT> 4 11 3
>> AMT> 5 6 4
>> AMT> 6 7 5
>> AMT> 7 2 6
>> AMT> 8 3 7
>> AMT> 9 3 8
>> AMT> and I do
>> AMT> model <- lm (growth ~ tannin)
>> AMT> AIC(model)
>>
>> AMT> R responses:
>> AMT> 38.75990
>>
>> AMT> I know the following formula to compute AIC:
>> AMT> AIC= -2*log-likelihood + 2*(p+1)
>>
>> AMT> In my example, it would be:
>> AMT> AIC=-2*log-likelihood + 2*2
>> AMT> but I don't know how R computes log-likelihood:
>>
>> AMT> logLik(model)
>> AMT> 'log Lik.' -16.37995 (df=3)
>>
>> and so?
>
> What is the formula to compute logLik? I don't know how to compute "by hand"
> logLik(model) and obtain -16.37995.
Do you not have a regression textbook to look this up in? The R posting
guide makes quite clear this is not a list on basic statistics.
Hint: look at stats:::logLik.lm to see the formula expressed in R.
>
>
> Arnau.
>>
>>
>> Hint: Your only problem is that your 'p' is wrongly off by one.
>> 2nd Hint: sigma is a parameter, too
I suspect it is the intercept that was forgotten in p, and sigma is the
'1' in 'p+1'.
>
> ------------------------------------------------------------
> Arnau Mir Torres
> Edifici A. Turmeda
> Campus UIB
> Ctra. Valldemossa, km. 7,5
> 07122 Palma de Mca.
> tel: (+34) 971172987
> fax: (+34) 971173003
> email: arnau.mir at uib.es
> URL: http://dmi.uib.es/~arnau
> ------------------------------------------------------------
--
Brian D. Ripley, ripley at stats.ox.ac.uk
Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/
University of Oxford, Tel: +44 1865 272861 (self)
1 South Parks Road, +44 1865 272866 (PA)
Oxford OX1 3TG, UK Fax: +44 1865 272595
More information about the R-help
mailing list