[R] Very slow: using double apply and cor.test to compute correlation p.values for 2 matrices
jim holtman
jholtman at gmail.com
Wed Nov 26 15:14:40 CET 2008
Your time is being taken up in cor.test because you are calling it
100,000 times. So grin and bear it with the amount of work you are
asking it to do.
Here I am only calling it 100 time:
> m1 <- matrix(rnorm(10000), ncol=100)
> m2 <- matrix(rnorm(10000), ncol=100)
> Rprof('/tempxx.txt')
> system.time(cor.pvalues <- apply(m1, 1, function(x) { apply(m2, 1, function(y) { cor.test(x,y)$p.value }) }))
user system elapsed
8.86 0.00 8.89
>
so my guess is that calling it 100,000 times will take: 100,000 *
0.0886 seconds or about 3 hours.
If you run Rprof, you will see if is spending most of its time there:
0 8.8 root
1. 8.8 apply
2. . 8.8 FUN
3. . . 8.8 apply
4. . . . 8.7 FUN
5. . . . . 8.6 cor.test
6. . . . . . 8.4 cor.test.default
7. . . . . . . 2.4 match.arg
8. . . . . . . . 1.7 eval
9. . . . . . . . . 1.4 deparse
10. . . . . . . . . . 0.6 .deparseOpts
11. . . . . . . . . . . 0.2 pmatch
11. . . . . . . . . . . 0.1 sum
10. . . . . . . . . . 0.5 %in%
11. . . . . . . . . . . 0.3 match
12. . . . . . . . . . . . 0.3 is.factor
13. . . . . . . . . . . . . 0.3 inherits
8. . . . . . . . 0.2 formals
9. . . . . . . . . 0.2 sys.function
7. . . . . . . 2.1 cor
8. . . . . . . . 1.1 match.arg
9. . . . . . . . . 0.7 eval
10. . . . . . . . . . 0.6 deparse
11. . . . . . . . . . . 0.3 .deparseOpts
12. . . . . . . . . . . . 0.1 pmatch
11. . . . . . . . . . . 0.2 %in%
12. . . . . . . . . . . . 0.2 match
13. . . . . . . . . . . . . 0.1 is.factor
14. . . . . . . . . . . . . . 0.1 inherits
9. . . . . . . . . 0.1 formals
8. . . . . . . . 0.5 stopifnot
9. . . . . . . . . 0.2 match.call
8. . . . . . . . 0.1 pmatch
8. . . . . . . . 0.1 is.data.frame
9. . . . . . . . . 0.1 inherits
7. . . . . . . 1.5 paste
8. . . . . . . . 1.4 deparse
9. . . . . . . . . 0.6 .deparseOpts
10. . . . . . . . . . 0.3 pmatch
10. . . . . . . . . . 0.1 any
9. . . . . . . . . 0.6 %in%
10. . . . . . . . . . 0.6 match
11. . . . . . . . . . . 0.5 is.factor
12. . . . . . . . . . . . 0.4 inherits
13. . . . . . . . . . . . . 0.2 mode
7. . . . . . . 0.4 switch
8. . . . . . . . 0.1 qnorm
7. . . . . . . 0.2 pt
5. . . . . 0.1 $
On Tue, Nov 25, 2008 at 11:55 PM, Daren Tan <daren76 at hotmail.com> wrote:
>
> My two matrices are roughly the sizes of m1 and m2. I tried using two apply and cor.test to compute the correlation p.values. More than an hour, and the codes are still running. Please help to make it more efficient.
>
> m1 <- matrix(rnorm(100000), ncol=100)
> m2 <- matrix(rnorm(10000000), ncol=100)
>
> cor.pvalues <- apply(m1, 1, function(x) { apply(m2, 1, function(y) { cor.test(x,y)$p.value }) })
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Jim Holtman
Cincinnati, OH
+1 513 646 9390
What is the problem that you are trying to solve?
More information about the R-help
mailing list