[R] SVD on a matix
Yasir Kaheil
kaheil at gmail.com
Sun May 25 09:09:20 CEST 2008
the variance is the eigen values of the correlation matrix of yoru matrix
X.cor <- cor(X)
X.e <- eigen(X.cor)
X.e$values# Eigenvalues of cor(X) = variances you're asking about
kayj wrote:
>
> Hi All,
>
> I performed an svd on a matrix X and saved the first three column of the
> left singular matrix U. ( I assume that they correspond to the projection
> of the matrix on the first three eigen vectors that corresponds to the
> first three largest eigenvalues). I would like to know how much variance
> is explained by the first eigenvectors? how can I find that.
>
> Thanks for your help
>
-----
Yasir H. Kaheil
Catchment Research Facility
The University of Western Ontario
--
View this message in context: http://www.nabble.com/SVD-on-a-matix-tp17441337p17455129.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list