[R] question for Logic Regression
Yasir Kaheil
kaheil at gmail.com
Mon May 19 23:14:56 CEST 2008
try:
alltrees <- predict(logicfit)
coldeyes wrote:
>
> thanks for you response, i try predict command, it is doesn't work. i
> list a simulate code below:
>
> X <- matrix(as.numeric(runif(400) < 0.5), 50,8)
> colnames(X) <- paste("X", 1:ncol(X), sep="")
> rownames(X) <- paste("case", 1:nrow(X), sep="")
>
> # Define expected result: Y = (NOT X2) AND X6
> Y <- as.numeric(!X[,2] & X[,6])
>
> Z<-cbin(X,Y)
>
> set.seed(12345)
>
> Annealing <- logreg.anneal.control(start = 4, end = -4, iter = 1000,
> update = 50)
>
> logicfit <- logreg(resp=Z[,9], bin=Z[,1:8],
> type = 3,
> select = 2,
> ntrees=2,
> nleaves=3,
> anneal.control=Annealing)
>
> new<-data.frame(Z)
> new<-NULL
> alltrees <- predict(logicfit, new)
>
> names(logicfit)
>
> doesn't have coef class.
>
> thanks
>
>
>
>
> Yasir Kaheil wrote:
>>
>> try
>> alltrees <- predict(fit, model.dat2) # make sure response variable is not
>> included in model.dat2
>>
>> also to see the other attributes in "fit", try: attributes(fit)
>>
>> thanks
>> y
>>
>>
>>
>> coldeyes.Rhelp wrote:
>>>
>>> Hi All:
>>>
>>> how to get the coefficient for logic regression using selection=2 ( fit
>>> multiple models) and type=3 ( logistic regression)
>>> for example i have a fit like below :
>>> fit<-logreg(resp = model.dat[,21], bin=model.dat[,
>>> 2:18],sep=model.dat[,1] ,type=3,select=2,ntrees=2,nleaves=6
>>> ,anneal.control=Annealing,tree.control=TreeControl)
>>>
>>> i try to use fit$coef but i get nothing.
>>>
>>> and i try to use eval.logreg to evaluate a validate data "model.dat2",
>>> but i cannot fit "model" class make below formula work
>>> alltrees <- eval.logreg(fit$model , model.dat2)
>>>
>>> could anyone enlighten me a little.
>>> thanks
>>> leo
>>>
>>> ______________________________________________
>>> R-help at r-project.org mailing list
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide
>>> http://www.R-project.org/posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>>
>>>
>>
>>
>
>
-----
Yasir H. Kaheil
Catchment Research Facility
The University of Western Ontario
--
View this message in context: http://www.nabble.com/question-for-Logic-Regression-tp17310610p17328322.html
Sent from the R help mailing list archive at Nabble.com.
More information about the R-help
mailing list