[R] ML Estimation Differences with R and SAS

Patrick Richardson xplaner800 at comcast.net
Mon Mar 10 18:09:06 CET 2008


List,

I'm working on fitting a logistic model for a well known dataset (which is
given below in case anyone wants to try to reproduce).  I used both R and
SAS to fit the model and have some differences in the parameter estimates.
I'm wondering if R calculates the ML estimates differently.  I'm making NO
accusations as to which program is "right or wrong".  That is not the focus
of this posting.  As a "newer" R user I'm trying to understand the algorithm
that R might use to calculate ML estimation.  The largest difference seems
to with the race factors.  R gives a p-value of 0.46995 for race=black and
SAS gives a p-value of 0.0753 for race=black.  Clearly one is borderline
significant and the other is not.  Many thanks to all who might be able to
offer any insight on this.  Both R and SAS code and output are included in
this message (along with the dataset).

Thanks,

Patrick


MY R CODE IS:

Dataset <- read.table("<path>", header=TRUE, sep="", na.strings="NA",
dec=".", strip.white=TRUE)
Dataset$race <- factor(Dataset$race, levels=c('other','black','white'))
GLM.1 <- glm(low  ~ lwt  + ptl  + ht  + race  + smoke ,
family=binomial(logit), data=Dataset)
summary(GLM.1)

MY SAS CODE IS:

PROC LOGISTIC descending DATA=p2;
class race (ref='other');
MODEL LOW = lwt ptl ht race smoke / lackfit parmlabel expb link=logit;
RUN;

MY R OUTPUT IS:

Coefficients:
              Estimate Std. Error z value Pr(>|z|)   
(Intercept)    0.92619    0.85549   1.083  0.27897   
lwt           -0.01650    0.00692  -2.384  0.01712 * 
ptl            1.23116    0.44607   2.760  0.00578 **
ht             1.76197    0.70748   2.490  0.01276 * 
race[T.black]  0.39552    0.54739   0.723  0.46995   
race[T.white] -0.86291    0.43517  -1.983  0.04737 * 
smoke          0.88007    0.40049   2.197  0.02798 * 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 234.67  on 188  degrees of freedom
Residual deviance: 200.62  on 182  degrees of freedom
AIC: 214.62

Number of Fisher Scoring iterations: 4

MY SAS OUTPUT IS:

                                      The LOGISTIC Procedure

                           Analysis of Maximum Likelihood Estimates

                                 Standard        Wald
  Parameter        DF  Estimate     Error  Chi-Square  Pr > ChiSq  Exp(Est)
Label

  Intercept         1    0.9287    0.9326      0.9916      0.3193     2.531
Intercept: low=1
  lwt               1   -0.0173   0.00699      6.1425      0.0132     0.983
  ptl               1    1.1958    0.4472      7.1493      0.0075     3.306
  ht                1    1.7482    0.7090      6.0805      0.0137     5.745
  race      black   1    0.5963    0.3352      3.1643      0.0753     1.815
race black
  race      white   1   -0.7200    0.2668      7.2803      0.0070     0.487
race white
  smoke             1    0.8648    0.4009      4.6534      0.0310     2.375





0     19     182     black     0     0     1     0     0     2523
0     33     155     other     0     0     0     1     0     2551
0     20     105     white     1     0     0     1     0     2557
0     21     108     white     1     0     1     1     0     2594
0     18     107     white     1     0     1     0     0     2600
0     21     124     other     0     0     0     0     0     2622
0     22     118     white     0     0     0     1     0     2637
0     17     103     other     0     0     0     1     0     2637
0     29     123     white     1     0     0     1     0     2663
0     26     113     white     1     0     0     0     0     2665
0     19     95      other     0     0     0     0     0     2722
0     19     150     other     0     0     0     1     0     2733
0     22     95      other     0     1     0     0     0     2750
0     30     107     other     0     0     1     1     1     2750
0     18     100     white     1     0     0     0     0     2769
0     15     98      black     0     0     0     0     0     2778
0     25     118     white     1     0     0     1     0     2782
0     20     120     other     0     0     1     0     0     2807
0     28     120     white     1     0     0     1     0     2821
0     32     101     other     0     0     0     1     0     2835
0     31     100     white     0     0     1     1     0     2835
0     36     202     white     0     0     0     1     0     2836
0     28     120     other     0     0     0     0     0     2863
0     25     120     other     0     0     1     1     0     2877
0     28     167     white     0     0     0     0     0     2877
0     17     122     white     1     0     0     0     0     2906
0     29     150     white     0     0     0     1     0     2920
0     26     168     black     1     0     0     0     0     2920
0     17     113     black     0     0     0     1     0     2920
0     24     90      white     1     0     0     1     1     2948
0     35     121     black     1     0     0     1     1     2948
0     25     155     white     0     0     0     1     0     2977
0     25     125     black     0     0     0     0     0     2977
0     29     140     white     1     0     0     1     0     2977
0     19     138     white     1     0     0     1     0     2977
0     27     124     white     1     0     0     0     0     2992
0     31     215     white     1     0     0     1     0     3005
0     33     109     white     1     0     0     1     0     3033
0     21     185     black     1     0     0     1     0     3042
0     19     189     white     0     0     0     1     0     3062
0     23     130     black     0     0     0     1     0     3062
0     21     160     white     0     0     0     0     0     3062
0     18     90      white     1     0     1     0     0     3076
0     18     90      white     1     0     1     0     0     3076
0     32     132     white     0     0     0     1     0     3080
0     19     132     other     0     0     0     0     0     3090
0     24     115     white     0     0     0     1     0     3090
0     22     85      other     1     0     0     0     0     3090
0     22     120     white     0     1     0     1     0     3100
0     23     128     other     0     0     0     0     0     3104
0     22     130     white     1     0     0     0     0     3132
0     30     95      white     1     0     0     1     0     3147
0     19     115     other     0     0     0     0     0     3175
0     16     110     other     0     0     0     0     0     3175
0     21     110     other     1     0     1     0     0     3203
0     30     153     other     0     0     0     0     0     3203
0     20     103     other     0     0     0     0     0     3203
0     17     119     other     0     0     0     0     0     3225
0     23     119     other     0     0     0     1     0     3232
0     24     110     other     0     0     0     0     0     3232
0     28     140     white     0     0     0     0     0     3234
0     26     133     other     1     0     0     0     1     3260
0     20     169     other     0     0     1     1     1     3274
0     24     115     other     0     0     0     1     0     3274
0     28     250     other     1     0     0     1     0     3303
0     20     141     white     0     0     1     1     1     3317
0     22     158     black     0     0     0     1     1     3317
0     22     112     white     1     0     0     0     1     3317
0     31     150     other     1     0     0     1     0     3321
0     23     115     other     1     0     0     1     0     3331
0     16     112     black     0     0     0     0     0     3374
0     16     135     white     1     0     0     0     0     3374
0     18     229     black     0     0     0     0     0     3402
0     25     140     white     0     0     0     1     0     3416
0     32     134     white     1     0     0     1     1     3430
0     20     121     black     1     0     0     0     0     3444
0     23     190     white     0     0     0     0     0     3459
0     22     131     white     0     0     0     1     0     3460
0     32     170     white     0     0     0     0     0     3473
0     30     110     other     0     0     0     0     0     3475
0     20     127     other     0     0     0     0     0     3487
0     23     123     other     0     0     0     0     0     3544
0     17     120     other     1     0     0     0     0     3572
0     19     105     other     0     0     0     0     0     3572
0     23     130     white     0     0     0     0     0     3586
0     36     175     white     0     0     0     0     0     3600
0     22     125     white     0     0     0     1     0     3614
0     24     133     white     0     0     0     0     0     3614
0     21     134     other     0     0     0     1     0     3629
0     19     235     white     1     1     0     0     0     3629
0     25     95      white     1     0     1     0     1     3637
0     16     135     white     1     0     0     0     0     3643
0     29     135     white     0     0     0     1     0     3651
0     29     154     white     0     0     0     1     0     3651
0     19     147     white     1     0     0     0     0     3651
0     19     147     white     1     0     0     0     0     3651
0     30     137     white     0     0     0     1     0     3699
0     24     110     white     0     0     0     1     0     3728
0     19     184     white     1     1     0     0     0     3756
0     24     110     other     0     0     0     0     1     3770
0     23     110     white     0     0     0     1     0     3770
0     20     120     other     0     0     0     0     0     3770
0     25     241     black     0     1     0     0     0     3790
0     30     112     white     0     0     0     1     0     3799
0     22     169     white     0     0     0     0     0     3827
0     18     120     white     1     0     0     1     0     3856
0     16     170     black     0     0     0     1     0     3860
0     32     186     white     0     0     0     1     0     3860
0     18     120     other     0     0     0     1     0     3884
0     29     130     white     1     0     0     1     0     3884
0     33     117     white     0     0     1     1     0     3912
0     20     170     white     1     0     0     0     0     3940
0     28     134     other     0     0     0     1     0     3941
0     14     135     white     0     0     0     0     0     3941
0     28     130     other     0     0     0     0     0     3969
0     25     120     white     0     0     0     1     0     3983
0     16     95      other     0     0     0     1     0     3997
0     20     158     white     0     0     0     1     0     3997
0     26     160     other     0     0     0     0     0     4054
0     21     115     white     0     0     0     1     0     4054
0     22     129     white     0     0     0     0     0     4111
0     25     130     white     0     0     0     1     0     4153
0     31     120     white     0     0     0     1     0     4167
0     35     170     white     0     0     0     1     1     4174
0     19     120     white     1     0     0     0     0     4238
0     24     116     white     0     0     0     1     0     4593
0     45     123     white     0     0     0     1     0     4990
1     28     120     other     1     0     1     0     1     709
1     29     130     white     0     0     1     1     0     1021
1     34     187     black     1     1     0     0     0     1135
1     25     105     other     0     1     0     0     1     1330
1     25     85      other     0     0     1     0     0     1474
1     27     150     other     0     0     0     0     0     1588
1     23     97      other     0     0     1     1     0     1588
1     24     124     black     0     0     0     1     1     1701
1     24     132     other     0     1     0     0     0     1729
1     21     165     white     1     1     0     1     0     1790
1     32     105     white     1     0     0     0     0     1818
1     19     91      white     1     0     1     0     1     1885
1     25     115     other     0     0     0     0     0     1893
1     16     130     other     0     0     0     1     0     1899
1     25     92      white     1     0     0     0     0     1928
1     20     150     white     1     0     0     1     0     1928
1     21     200     black     0     0     1     1     0     1928
1     24     155     white     1     0     0     0     1     1936
1     21     103     other     0     0     0     0     0     1970
1     20     125     other     0     0     1     0     0     2055
1     25     89      other     0     0     0     1     1     2055
1     19     102     white     0     0     0     1     0     2082
1     19     112     white     1     0     1     0     0     2084
1     26     117     white     1     0     0     0     1     2084
1     24     138     white     0     0     0     0     0     2100
1     17     130     other     1     0     1     0     1     2125
1     20     120     black     1     0     0     1     0     2126
1     22     130     white     1     0     1     1     1     2187
1     27     130     black     0     0     1     0     0     2187
1     20     80      other     1     0     1     0     0     2211
1     17     110     white     1     0     0     0     0     2225
1     25     105     other     0     0     0     1     1     2240
1     20     109     other     0     0     0     0     0     2240
1     18     148     other     0     0     0     0     0     2282
1     18     110     black     1     0     0     0     1     2296
1     20     121     white     1     0     1     0     1     2296
1     21     100     other     0     0     0     1     1     2301
1     26     96      other     0     0     0     0     0     2325
1     31     102     white     1     0     0     1     1     2353
1     15     110     white     0     0     0     0     0     2353
1     23     187     black     1     0     0     1     0     2367
1     20     122     black     1     0     0     0     0     2381
1     24     105     black     1     0     0     0     0     2381
1     15     115     other     0     0     1     0     0     2381
1     23     120     other     0     0     0     0     0     2395
1     30     142     white     1     0     0     0     1     2410
1     22     130     white     1     0     0     1     0     2410
1     17     120     white     1     0     0     1     0     2414
1     23     110     white     1     0     0     0     1     2424
1     17     120     black     0     0     0     1     0     2438
1     26     154     other     0     1     0     1     1     2442
1     20     105     other     0     0     0     1     0     2450
1     26     190     white     1     0     0     0     0     2466
1     14     101     other     1     0     0     0     1     2466
1     28     95      white     1     0     0     1     0     2466
1     14     100     other     0     0     0     1     0     2495
1     23     94      other     1     0     0     0     0     2495
1     17     142     black     0     1     0     0     0     2495
1     21     130     white     1     1     0     1     0     2495



More information about the R-help mailing list