[R] OLS standard errors
Viechtbauer Wolfgang (STAT)
Wolfgang.Viechtbauer at STAT.unimaas.nl
Tue Feb 26 09:21:45 CET 2008
Try multiplying var(e) by n-1 and dividing by n-3 (97 are the degrees of freedom for the sum of squares error in your example). Then it all matches up nicely.
Best,
--
Wolfgang Viechtbauer
Department of Methodology and Statistics
University of Maastricht, The Netherlands
http://www.wvbauer.com/
----Original Message----
From: r-help-bounces at r-project.org
[mailto:r-help-bounces at r-project.org] On Behalf Of Daniel Malter Sent:
Tuesday, February 26, 2008 08:25 To: 'r-help'
Subject: [R] OLS standard errors
> Hi,
>
> the standard errors of the coefficients in two regressions that I
> computed by hand and using lm() differ by about 1%. Can somebody help
> me to identify the source of this difference? The coefficient
> estimates are the same, but the standard errors differ.
>
> ####Simulate data
>
> happiness=0
> income=0
> gender=(rep(c(0,1,1,0),25))
> for(i in 1:100){
> happiness[i]=1000+i+rnorm(1,0,40)
> income[i]=2*i+rnorm(1,0,40)
> }
>
> ####Run lm()
>
> reg=lm(happiness~income+factor(gender))
> summary(reg)
>
> ####Compute coefficient estimates "by hand"
>
> x=cbind(income,gender)
> y=happiness
>
> z=as.matrix(cbind(rep(1,100),x))
> beta=solve(t(z)%*%z)%*%t(z)%*%y
>
> ####Compare estimates
>
> cbind(reg$coef,beta) ##fine so far, they both look the same
>
> reg$coef[1]-beta[1]
> reg$coef[2]-beta[2]
> reg$coef[3]-beta[3] ##differences are too small to cause a 1%
> difference
>
> ####Check predicted values
>
> estimates=c(beta[2],beta[3])
>
> predicted=estimates%*%t(x)
> predicted=as.vector(t(as.double(predicted+beta[1])))
>
> cbind(reg$fitted,predicted) ##inspect fitted values
> as.vector(reg$fitted-predicted) ##differences are marginal
>
> #### Compute errors
>
> e=NA
> e2=NA
> for(i in 1:length(happiness)){
> e[i]=y[i]-predicted[i] ##for "hand-computed" regression
> e2[i]=y[i]-reg$fitted[i] ##for lm() regression
> }
>
> #### Compute standard error of the coefficients
>
> sqrt(abs(var(e)*solve(t(z)%*%z))) ##for "hand-computed" regression
> sqrt(abs(var(e2)*solve(t(z)%*%z))) ##for lm() regression using e2
> from
> above
>
> ##Both are the same
>
> ####Compare to lm() standard errors of the coefficients again
>
> summary(reg)
>
>
> The diagonal elements of the variance/covariance matrices should be
> the standard errors of the coefficients. Both are identical when
> computed by hand. However, they differ from the standard errors
> reported in summary(reg). The difference of 1% seems nonmarginal.
> Should I have multiplied var(e)*solve(t(z)%*%z) by n and divided by
> n-1? But even if I do this, I still observe a difference. Can anybody
> help me out what the source of this difference is?
>
> Cheers,
> Daniel
>
>
> -------------------------
> cuncta stricte discussurus
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list