[R] Prediction intervals for zero inflated Poisson regression
ONKELINX, Thierry
Thierry.ONKELINX at inbo.be
Wed Dec 17 13:57:47 CET 2008
Dear Achim,
Thanks for the script. It works fine except it sometimes yields extreme
wide confidence intervals. That is for a factor level with only a few
replications or a level with all zeros. I noticed that the se for those
predictions was Nan. Therefore I've added two lines (marked with #% at
the end) that set the lower and upper bound to NA when is.na(se). No
confidence intervals make, in my opinion, in those cases more sense than
c.i. like [1e-200, 1e200].
Best regards,
Thierry
------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature
and Forest
Cel biometrie, methodologie en kwaliteitszorg / Section biometrics,
methodology and quality assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium
tel. + 32 54/436 185
Thierry.Onkelinx op inbo.be
www.inbo.be
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data.
~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey
-----Oorspronkelijk bericht-----
Van: Achim Zeileis [mailto:Achim.Zeileis op wu-wien.ac.at]
Verzonden: dinsdag 16 december 2008 16:45
Aan: ONKELINX, Thierry
CC: r-help op r-project.org
Onderwerp: Re: [R] Prediction intervals for zero inflated Poisson
regression
Thierry,
Simon had written some code for this but we never got round to fully
integrate it into the "pscl" package. A file pb.R is attached, but as a
disclaimer: I haven't looked at this code for a while. It still seems to
work (an example is included at the end) but please check.
hth,
Z
On Tue, 16 Dec 2008, ONKELINX, Thierry wrote:
> Dear all,
>
> I'm using zeroinfl() from the pscl-package for zero inflated Poisson
> regression. I would like to calculate (aproximate) prediction
intervals
> for the fitted values. The package itself does not provide them. Can
> this be calculated analyticaly? Or do I have to use bootstrap?
>
> What I tried until now is to use bootstrap to estimate these
intervals.
> Any comments on the code are welcome. The data and the model are based
> on the examples in zeroinfl().
>
> #aproximate prediction intervals with Poisson regression
> fm_pois <- glm(art ~ fem, data = bioChemists, family = poisson)
> newdata <- na.omit(unique(bioChemists[, "fem", drop = FALSE]))
> prediction <- predict(fm_pois, newdata = newdata, se.fit = TRUE)
> ci <- data.frame(exp(prediction$fit + matrix(prediction$se.fit, ncol =
> 1) %*% c(-1.96, 1.96)))
> newdata$fit <- exp(prediction$fit)
> newdata <- cbind(newdata, ci)
> newdata$model <- "Poisson"
>
> library(pscl)
> #aproximate prediction intervals with zero inflated poisson regression
> fm_zip <- zeroinfl(art ~ fem | 1, data = bioChemists)
> fit <- predict(fm_zip)
> Pearson <- resid(fm_zip, type = "pearson")
> VarComp <- resid(fm_zip, type = "response") / Pearson
> fem <- bioChemists$fem
> bootstrap <- replicate(999, {
> yStar <- pmax(round(fit + sample(Pearson) * VarComp, 0), 0)
> predict(zeroinfl(yStar ~ fem | 1), newdata = newdata)
> })
> newdata0 <- newdata
> newdata0$fit <- predict(fm_zip, newdata = newdata, type = "response")
> newdata0[, 3:4] <- t(apply(bootstrap, 1, quantile, c(0.025, 0.975)))
> newdata0$model <- "Zero inflated"
>
> #compare the intervals in a nice plot.
> newdata <- rbind(newdata, newdata0)
> library(ggplot2)
> ggplot(newdata, aes(x = fem, y = fit, min = X1, max = X2, colour =
> model)) + geom_point(position = position_dodge(width = 0.4)) +
> geom_errorbar(position = position_dodge(width = 0.4))
>
>
> Best regards,
>
> Thierry
>
>
------------------------------------------------------------------------
> ----
> ir. Thierry Onkelinx
> Instituut voor natuur- en bosonderzoek / Research Institute for Nature
> and Forest
> Cel biometrie, methodologie en kwaliteitszorg / Section biometrics,
> methodology and quality assurance
> Gaverstraat 4
> 9500 Geraardsbergen
> Belgium
> tel. + 32 54/436 185
> Thierry.Onkelinx op inbo.be
> www.inbo.be
>
> To call in the statistician after the experiment is done may be no
more
> than asking him to perform a post-mortem examination: he may be able
to
> say what the experiment died of.
> ~ Sir Ronald Aylmer Fisher
>
> The plural of anecdote is not data.
> ~ Roger Brinner
>
> The combination of some data and an aching desire for an answer does
not
> ensure that a reasonable answer can be extracted from a given body of
> data.
> ~ John Tukey
>
> Dit bericht en eventuele bijlagen geven enkel de visie van de
schrijver weer
> en binden het INBO onder geen enkel beding, zolang dit bericht niet
bevestigd is
> door een geldig ondertekend document. The views expressed in this
message
> and any annex are purely those of the writer and may not be regarded
as stating
> an official position of INBO, as long as the message is not confirmed
by a duly
> signed document.
>
> ______________________________________________
> R-help op r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>
Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer
en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is
door een geldig ondertekend document. The views expressed in this message
and any annex are purely those of the writer and may not be regarded as stating
an official position of INBO, as long as the message is not confirmed by a duly
signed document.
More information about the R-help
mailing list