[R] how to handle irregularly spaced data as timeseries
Kirk Wythers
kwythers at umn.edu
Wed Dec 3 01:47:53 CET 2008
I have a set of modeled climate data recorded at irregular intervals.
The format of the data is such that there are monthly measurements for
the years 2000, 2020, 2050, 2080, etc. Therefore I have 12 regular
records, a skip of some number of years, then 12 more monthly records,
another skip, and so on.... I created a dataframe from .txt with the
read.table() command. For starters I need to simply plot the data as a
timeseries with DATE on the x axis. I am just getting my feet wet with
R, so I'm struggling a bit to follow the help() pages. Can anyone
point me in the proper direction? Thank you in advance.
Here is a piece of the dataframe:
> cloq.worldclim.HADCM3.A2a
DATE YEAR MONTH DAY DOY TMAX TMIN PAR PRECIP
1 15-Jan-2000 2000 1 15 16 -7.2 -19.7 334.99 2.5
2 15-Feb-2000 2000 2 15 46 -3.5 -16.8 471.48 1.7
3 15-Mar-2000 2000 3 15 75 2.7 -9.4 636.96 4.1
4 15-Apr-2000 2000 4 15 106 11.3 -2.1 726.60 5.6
5 15-May-2000 2000 5 15 136 18.9 3.3 767.50 8.3
6 15-Jun-2000 2000 6 15 167 23.8 8.3 783.51 10.3
7 15-Jul-2000 2000 7 15 197 26.9 12.1 827.87 9.9
8 15-Aug-2000 2000 8 15 228 25.3 11.2 775.03 10.1
9 15-Sep-2000 2000 9 15 259 19.7 6.7 649.83 9.2
10 15-Oct-2000 2000 10 15 289 13.3 1.1 500.14 6.2
11 15-Nov-2000 2000 11 15 320 3.1 -6.3 349.14 4.4
12 15-Dec-2000 2000 12 15 350 -4.8 -15.4 293.07 2.9
13 15-Jan-2020 2020 1 15 16 -7.4 -19.6 334.99 2.5
14 15-Feb-2020 2020 2 15 46 -3.1 -16.2 471.48 1.7
15 15-Mar-2020 2020 3 15 75 3.0 -8.7 636.96 4.9
16 15-Apr-2020 2020 4 15 106 12.9 -5.0 726.60 7.4
17 15-May-2020 2020 5 15 136 20.1 4.4 767.50 8.8
18 15-Jun-2020 2020 6 15 167 25.2 9.6 783.51 10.4
19 15-Jul-2020 2020 7 15 197 28.9 13.6 827.87 9.4
20 15-Aug-2020 2020 8 15 228 27.3 13.1 775.03 11.6
21 15-Sep-2020 2020 9 15 259 22.0 8.8 649.83 9.6
22 15-Oct-2020 2020 10 15 289 15.4 2.6 500.14 6.8
23 15-Nov-2020 2020 11 15 320 4.3 -4.8 349.14 4.8
24 15-Dec-2020 2020 12 15 350 -4.1 -14.3 293.07 2.5
25 15-Jan-2050 2050 1 15 16 -5.5 -17.3 334.99 3.2
26 15-Feb-2050 2050 2 15 46 -1.7 -14.2 471.48 1.8
27 15-Mar-2050 2050 3 15 75 4.0 -7.1 636.96 5.1
28 15-Apr-2050 2050 4 15 106 13.4 -3.0 726.60 7.1
29 15-May-1950 2050 5 15 136 21.7 5.8 767.50 8.4
30 15-Jun-2050 2050 6 15 167 27.2 11.2 783.51 9.5
31 15-Jul-2050 2050 7 15 197 31.2 15.3 827.87 9.4
32 15-Aug-2050 2050 8 15 228 30.4 15.0 775.03 9.6
33 15-Sep-2050 2050 9 15 259 23.8 10.1 649.83 10.3
34 15-Oct-2050 2050 10 15 289 16.6 3.9 500.14 7.7
35 15-Nov-2050 2050 11 15 320 5.5 -3.6 349.14 5.3
36 15-Dec-2050 2050 12 15 350 -3.3 -13.2 293.07 2.5
More information about the R-help
mailing list