[R] Comparing output from linear regression to output from quasipoisson to determine the model that fits best.
Uwe Ligges
ligges at statistik.tu-dortmund.de
Tue Dec 2 09:58:32 CET 2008
John Sorkin wrote:
> R 2.7
> Windows XP
>
> I have two model that have been run using exactly the same data, both fit using glm(). One model is a linear regression (gaussian(link = "identity")) the other a quasipoisson(link = "log"). I have log likelihoods from each model. Is there any way I can determine which model is a better fit to the data? anova() does not appear to work as the models have the same residual degrees of freedom:
Since the class of the models is quite different, I'd go on by looking
carefully at the residuals.
Uwe Ligges
> fit1<-glm(PHYSFUNC~HIV,data=KA)
> summary(fit1)
>
> fitQP<-glm(PHYSFUNC~HIV,data=KA,family=quasipoisson)
> summary(fitQP)
>
> anova(fit1,fitOP)
>
>
> Program OUTPUT:
>> fit1<-glm(PHYSFUNC~HIV,data=KA)
>> summary(fit1)
>
> Call:
> glm(formula = PHYSFUNC ~ HIV, data = KA)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -4.197 -4.192 -2.192 2.808 19.808
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 4.19670 0.08508 49.33 <2e-16 ***
> HIV -0.00487 0.12071 -0.04 0.968
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> (Dispersion parameter for gaussian family taken to be 22.78134)
>
> Null deviance: 142429 on 6253 degrees of freedom
> Residual deviance: 142429 on 6252 degrees of freedom
> (213 observations deleted due to missingness)
> AIC: 37302
>
> Number of Fisher Scoring iterations: 2
>
>> fitQP<-glm(PHYSFUNC~HIV,data=KA,family=quasipoisson)
>> summary(fitQP)
>
> Call:
> glm(formula = PHYSFUNC ~ HIV, family = quasipoisson, data = KA)
>
> Deviance Residuals:
> Min 1Q Median 3Q Max
> -2.897 -2.895 -1.193 1.250 6.644
>
> Coefficients:
> Estimate Std. Error t value Pr(>|t|)
> (Intercept) 1.434297 0.020280 70.72 <2e-16 ***
> HIV -0.001161 0.028780 -0.04 0.968
> ---
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> (Dispersion parameter for quasipoisson family taken to be 5.432011)
>
> Null deviance: 35439 on 6253 degrees of freedom
> Residual deviance: 35439 on 6252 degrees of freedom
> (213 observations deleted due to missingness)
> AIC: NA
>
> Number of Fisher Scoring iterations: 5
>
>> anova(fit1,fitQP)
> Analysis of Deviance Table
>
> Model 1: PHYSFUNC ~ HIV
> Model 2: PHYSFUNC ~ HIV
> Resid. Df Resid. Dev Df Deviance
> 1 6252 142429
> 2 6252 35439 0 106989
>
>
> Thanks,
> John
>
>
>
>
>
> John David Sorkin M.D., Ph.D.
> Chief, Biostatistics and Informatics
> University of Maryland School of Medicine Division of Gerontology
> Baltimore VA Medical Center
> 10 North Greene Street
> GRECC (BT/18/GR)
> Baltimore, MD 21201-1524
> (Phone) 410-605-7119
> (Fax) 410-605-7913 (Please call phone number above prior to faxing)
>
> Confidentiality Statement:
> This email message, including any attachments, is for th...{{dropped:6}}
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
More information about the R-help
mailing list