[R] use nnet
Wensui Liu
liuwensui at gmail.com
Fri Mar 9 19:37:56 CET 2007
AM,
I have a pieice of junk on my blog. Here it is.
#################################################
# USE CROSS-VALIDATION TO DO A GRID-SEARCH FOR #
# THE OPTIMAL SETTINGS (WEIGHT DECAY AND NUMBER #
# OF HIDDEN UNITS) OF NEURAL NETS #
#################################################
library(nnet);
library(MASS);
data(Boston);
X <- I(as.matrix(Boston[-14]));
# STANDARDIZE PREDICTORS
st.X <- scale(X);
Y <- I(as.matrix(Boston[14]));
boston <- data.frame(X = st.X, Y);
# DIVIDE DATA INTO TESTING AND TRAINING SETS
set.seed(2005);
test.rows <- sample(1:nrow(boston), 100);
test.set <- boston[test.rows, ];
train.set <- boston[-test.rows, ];
# INITIATE A NULL TABLE
sse.table <- NULL;
# SEARCH FOR OPTIMAL WEIGHT DECAY
# RANGE OF WEIGHT DECAYS SUGGESTED BY B. RIPLEY
for (w in c(0.0001, 0.001, 0.01))
{
# SEARCH FOR OPTIMAL NUMBER OF HIDDEN UNITS
for (n in 1:10)
{
# UNITIATE A NULL VECTOR
sse <- NULL;
# FOR EACH SETTING, RUN NEURAL NET MULTIPLE TIMES
for (i in 1:10)
{
# INITIATE THE RANDOM STATE FOR EACH NET
set.seed(i);
# TRAIN NEURAL NETS
net <- nnet(Y~X, size = n, data = train.set, rang = 0.00001,
linout = TRUE, maxit = 10000, decay = w,
skip = FALSE, trace = FALSE);
# CALCULATE SSE FOR TESTING SET
test.sse <- sum((test.set$Y - predict(net, test.set))^2);
# APPEND EACH SSE TO A VECTOR
if (i == 1) sse <- test.sse else sse <- rbind(sse, test.sse);
}
# APPEND AVERAGED SSE WITH RELATED PARAMETERS TO A TABLE
sse.table <- rbind(sse.table, c(WT = w, UNIT = n, SSE = mean(sse)));
}
}
# PRINT OUT THE RESULT
print(sse.table);http://statcompute.spaces.live.com/Blog/cns!39C8032DBD1321B7!290.entry
On 3/9/07, Aimin Yan <aiminy at iastate.edu> wrote:
> I want to adjust weight decay and number of hidden units for nnet by
> a loop like
> for(decay)
> {
> for(number of unit)
> {
> for(#run)
> {model<-nnet()
> test.error<-....
> }
> }
> }
>
> for example:
> I set decay=0.1, size=3, maxit=200, for this set I run 10 times, and
> calculate test error
>
> after that I want to get a matrix like this
>
> decay size maxit #run test_error
> 0.1 3 200 1 1.2
> 0.1 3 200 2 1.1
> 0.1 3 200 3 1.0
> 0.1 3 200 4 3.4
> 0.1 3 200 5 ..
> 0.1 3 200 6 ..
> 0.1 3 200 7 ..
> 0.1 3 200 8 ..
> 0.1 3 200 9 ..
> 0.1 3 200 10 ..
> 0.2 3 200 1 1.2
> 0.2 3 200 2 1.1
> 0.2 3 200 3 1.0
> 0.2 3 200 4 3.4
> 0.2 3 200 5 ..
> 0.2 3 200 6 ..
> 0.2 3 200 7 ..
> 0.2 3 200 8 ..
> 0.2 3 200 9 ..
> 0.2 3 200 10 ..
>
> I am not sure if this is correct way to do this?
> Does anyone tune these parameters like this before?
> thanks,
>
> Aimin
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
WenSui Liu
A lousy statistician who happens to know a little programming
(http://spaces.msn.com/statcompute/blog)
More information about the R-help
mailing list