[R] SEM model fit
Cougar
Cougar_711 at msn.com
Wed Jun 27 22:38:31 CEST 2007
I wonder if someone could explain why, when I perform confirmatory
factor-analysis model using polychoric correlations why I do not get an
estimated confidence interval for the RMSEA. My experience with these type
models is that I would obtain a confidence interval estimate. I did not get
any warning messages with the output.
RESULTS:
Model Chisquare = 1374 Df = 185 Pr(>Chisq) = 0
Chisquare (null model) = 12284 Df = 210
Goodness-of-fit index = 0.903
Adjusted goodness-of-fit index = 0.88
RMSEA index = 0.0711 90% CI: (NA, NA)
Bentler-Bonnett NFI = 0.888
Tucker-Lewis NNFI = 0.888
Bentler CFI = 0.902
SRMR = 0.0682
BIC = 51.4
SYNTAX
rm(sem.enf.rq)
mdl.rq <- specify.model()
enf -> law2, NA, 1
enf -> law3, lam2, 1
enf -> law4, lam3, 1
enf <-> enf, psi1, 0.6
law2 <-> law2, theta1, 0.3
law3 <-> law3, theta2, 0.3
law4 <-> law4, theta3, 0.5
gender -> enf, a1, 0.2
incomex -> enf, a2, 0.2
oftdrnkr -> enf, a3, 0.2
attn -> nvatt, NA, 1
attn -> crimatt, lam4, 1.3
attn -> asltatt, lam5, 1.2
attn <-> attn, psi2, 0.5
nvatt <-> nvatt, theta4, 0.5
crimatt <-> crimatt, theta5, 0.1
asltatt <-> asltatt, theta6, 0.2
gender -> attn, a4, 0.2
acon -> acon1, NA, 1
acon -> acon2, lam4, 1.5
acon <-> acon, psi2, 0.1
mcon -> mvcon1, NA, 1
mcon -> mvcon2, lam5, 1
mcon <-> mcon, psi3, 0.3
ocon -> oicon1, NA, 1
ocon -> oicon2, lam6, 1
ocon <-> ocon, psi4, 0.2
con -> acon, NA, 1
con -> mcon, lam7, 0.8
con -> ocon, lam8, 0.9
con <-> con, psi5, 0.3
acon1 <-> acon1, theta7, 0.4
acon2 <-> acon2, theta8, 0.2
mvcon1 <-> mvcon1, theta9, 0.2
mvcon2 <-> mvcon2, theta10, 0.3
oicon1 <-> oicon1, theta11, 0.2
oicon2 <-> oicon2, theta12, 0.3
gender -> con, a5, 0.1
incomex -> con, a6, -0.1
oftdrnkr -> con, a7, -0.2
attn -> con, gam1, 0.2
sev -> aophys, NA, 1
sev -> mvphys, NA, 1
sev -> oiphys, NA, 1
sev <-> sev, psi6, 0.5
aophys <-> aophys, theta13, 0.5
mvphys <-> mvphys, theta14, 0.5
oiphys <-> oiphys, theta14, 0.5
con -> sev, gam3, 0.8
prev -> mvpct, NA, 1
prev -> oipct, NA, 1
prev -> alcpct, NA, 1
prev <-> prev, psi8, 0.4
mvpct <-> mvpct, theta15, 0.5
oipct <-> oipct, theta15, 0.5
alcpct <-> alcpct, theta15, 0.5
con -> prev, gam5, 0.8
prev -> enf, gam6, 0.4
sem.enf.rq <- sem(ram = mdl.rq, S = hcor(dx), N = nrow(dx), obs.v =
names(dx), raw = F, fixed = names(dx)[4:6], par.size = 's', maxiter = 1e3,
analytic = F, gradtol = 1e-10) ##set raw to False
summary(obj = sem.enf.rq, dig = 3, conf = 0.9)
Respectfully,
Frank Lawrence
More information about the R-help
mailing list