[R] Fine tunning rgenoud

Paul Smith phhs80 at gmail.com
Wed Jul 4 16:15:00 CEST 2007


On 7/4/07, RAVI VARADHAN <rvaradhan at jhmi.edu> wrote:
> My point is that it might be better to try multiple (feasible) starting values for constrOptim to ensure that you have a good local minimum, since it appears that constrOptim converges to a boundary solution where the gradient is non-zero.  That is why my code could be useful.

Thanks, Ravi. I have used your function, which works pretty fine.
However, constrOptim returns solutions markedly different, depending
on the starting values. That is true that I am expecting a solution in
the boundary, but should not constrOptim find boundary solutions
correctly? The set of solution that I got is below.

Paul

--------------------------------

2.67682495728743e-08	0.676401684216637	5.18627076390355e-09	0.00206463986063195	0.87185968612836	4.32039325909089e-11	0.999999999996234
3.71711020733097e-08	0.539853580957444	1.82592937615235e-08	0.00206941041763503	0.93305250393447	2.08076621230984e-11	0.999999999995774
1.55648443014316e-08	0.356047772992972	8.61341165816411e-09	0.00207149128044574	0.939531540703735	2.55211186629222e-12	0.999999999999424
2.20685747493755e-07	0.575689534431218	5.30976753476747e-08	0.00210500604605837	0.588947341576757	3.1310360048386e-10	0.999999999998789
1.92961662926727e-08	0.773588030510204	1.04841835042200e-08	0.00206723852358352	0.816755014708394	3.89478290348532e-11	0.999999999997794
0.000279824051289082	0.000310992385522886	1.01467522935252e-06	3.11645639181419e-05	0.00249801538651552	3.0978819115532e-05	7.11821104872585e-06
2.81901448690893e-07	0.381718731525906	4.72860507882539e-08	0.00206807672109157	0.769178513763055	1.39278079797628e-09	0.999999999967123
5.58938545019597e-05	0.00171253668169328	4.54005998518212e-09	0.00165663757292733	0.00247994862102590	6.20992250482468e-06	0.419169641865998
1.03300938985890e-08	0.438357835603591	6.89854079723234e-09	0.00206693286138396	0.977554885433201	1.17209206267609e-10	0.99999999996921
7.63336821363444e-05	0.00177141538041517	1.88050423143828e-10	0.00169507950991094	0.00249739505142207	8.4814984916537e-06	0.470929220605509
9.16005846107533e-09	0.682179815036755	1.63255733785783e-09	0.00206922107327189	0.919323193130209	5.71436138398897e-11	0.99999999999629
1.40968913167328e-08	0.343606628343661	1.33227447885302e-08	0.00206789984370423	0.343671264496824	1.11679312116211e-11	0.999999999999822
4.76054734844857e-09	0.593022549313178	2.28102966623129e-09	0.00206625165098398	0.947562121256448	8.9437610753173e-11	0.999999999999992
1.96950784184139e-07	0.579488113726155	1.61915231214025e-07	0.00208000350528798	1.00891340595040	1.22248906754713e-10	0.999999999996493
8.1448937742933e-09	0.441088618716555	4.54846390087941e-09	0.00207634940425852	0.446155700100820	4.81439647816238e-12	0.99999999999939
4.82439218405912e-08	0.557771049256698	3.53737879481732e-08	0.0020663035737319	0.588137767965923	2.6568947800491e-11	0.999999999988615
2.43086751126363e-08	0.522927598354163	2.26886829089137e-08	0.00206533531066324	0.611696593543814	4.51226610050184e-11	0.999999999999087
3.05498959434100e-08	0.465522202845817	1.09246302124670e-08	0.00207004066920179	0.465583376966915	3.24213847202457e-11	0.999999999997366
1.88687179088788e-07	0.783614197203923	4.51346471059839e-08	0.00222403775221293	0.786422171740329	8.17865794171933e-10	0.999999999986103
1.0154423824979e-08	0.302657777579883	9.06923080122203e-09	0.00206615353968094	0.359722316646974	8.27866320956902e-12	0.99999999998461
8.91008717665837e-08	0.0020661526864997	3.08619455858999e-09	0.00206579199039568	0.00275523149199496	9.55650084108725e-09	0.985185595958656
1.25320647920029e-07	0.635217955401437	7.44627883600107e-08	0.00206656250455391	0.855937507707323	3.70326032870889e-10	0.999999999998375
2.57618374406559e-08	0.636499151952225	1.09822023878715e-08	0.00206677354204888	0.772636071860102	8.99370944431481e-11	0.999999999978744
1.09474196877990e-08	0.501469973722704	1.19992915868609e-10	0.00206117941606503	0.501594064757161	1.34320044786225e-11	0.999999999991232
5.24203710193977e-05	0.000127998340144109	3.33258623630601e-09	7.55779680724378e-05	0.00248898574263025	5.82411313482383e-06	0.0221497278110802
3.80217498132259e-07	0.57664568703189	1.01755510162620e-08	0.00207232950382402	0.944031557945531	5.30703662426069e-10	0.999999999995957
1.45159816281038e-09	0.391742001993341	1.13492553980291e-09	0.00206615324883312	0.73041632635671	2.05351961803669e-11	0.99999999997684
8.74006318627465e-05	0.00176059707830211	1.94489765002966e-09	0.00167319599216734	0.00234472182706612	9.710963192258e-06	0.358282221037878
0.000238275046444342	0.000264776586825777	4.40904795740029e-10	2.64911355650347e-05	0.00259858019547791	2.64749446522330e-05	1.83580740341509e-07
7.39730651399581e-10	0.00908091738218919	2.48425610406978e-10	0.00206667909063917	0.00928420674840742	5.18131986840764e-11	0.99999875366957
6.76489417503509e-08	0.66948409231674	3.03852881114497e-08	0.00207327594614506	0.82038550137061	2.64031575134214e-11	0.999999999984622
2.47578596556463e-05	0.00192273935278028	1.23710433232059e-10	0.00189797520967688	0.00249714264227544	2.75085723641778e-06	0.654395200885401
1.89137722020867e-08	0.611106915103611	3.89703191870382e-09	0.00210184590871973	0.624411027730728	8.5135512646264e-11	0.99999999999684
0.00019176743398086	0.000561608946531094	3.86469382998825e-10	0.000369840972771214	0.00250444089363261	2.13074457599853e-05	0.0571352017772342
0.000185606084629350	0.000206269128591342	1.56795453162326e-11	2.06627190417154e-05	0.00249993097016385	2.06228887085015e-05	1.71605199821395e-06
6.07957336199056e-08	0.483682520205442	5.5863930138716e-09	0.00206322767692575	0.483682695616455	5.34362969147144e-11	0.999999999999643
2.32535804244419e-08	0.479995736120651	1.71422519965926e-08	0.00207338945556393	0.510141538832558	1.48964674702430e-11	0.999999999993732
8.9183702782689e-06	0.00206653282852738	1.75762003328053e-10	0.00205761314408722	0.00252353219843752	9.9090949737504e-07	0.833268509557228
1.98549228223182e-06	0.251617257564206	1.05359270191879e-06	0.0022260243792503	0.251624161164046	9.60072596752024e-08	0.99999999999983
3.98028438135354e-08	0.547004412551238	3.46420325883517e-08	0.00206593124574590	0.780233389945956	4.31912137883551e-11	0.999999999999248
7.415833973742e-09	0.411955745727431	6.63826778226352e-09	0.00206692655795474	0.422974654599724	6.0360458732987e-12	0.999999999999735
2.31198818168677e-09	0.00651214491263961	1.32346818065092e-09	0.00206600061742381	0.0308298577099849	1.09702273280814e-10	0.99987783901442
4.17312889043775e-08	0.535841994679291	2.16650907799191e-08	0.00206804295529002	0.59999577506709	1.18576996500002e-10	0.999999999999237
3.06571185479614e-08	0.210504230265054	2.05714086443132e-08	0.00206707615217700	0.218748559037881	2.15131848511398e-14	0.999999999993557
2.75615889053932e-09	0.410462493146348	1.61078464820130e-09	0.00206420001019636	0.410565659594555	9.40738331890563e-11	0.999999999999952
4.56613193593397e-09	0.408415058997493	2.33397373332447e-09	0.00206711241339086	0.532349316444773	6.74887208834456e-11	0.99999999999929
7.18189347926295e-08	0.456169544603848	5.38996419605601e-08	0.00206990174706466	1.10900729793115	1.09308927282691e-13	0.999999999990783
0.000188732057072893	0.000209745553735604	2.65570357321341e-11	2.10123232762018e-05	0.00249946399527847	2.09702247828353e-05	7.56804739408697e-07
5.85086685972612e-08	0.586106422015639	3.34740271798516e-08	0.00207017375045705	1.02476378656892	7.7586558103274e-11	0.999999999999751
0.000110963331385117	0.000134315151780862	1.07242866306447e-06	2.33497881113803e-05	0.00255535434807175	1.22100977811675e-05	0.0100715104652649
6.74756547544261e-05	0.00181277651670570	2.06882429964314e-10	0.0017453002881811	0.00248364499775618	7.49727080120661e-06	0.477865304416143
2.12169576142447e-09	0.258696699048681	3.83834275215625e-10	0.00206572907235368	0.593016720449582	2.47234004478185e-11	0.999999999976093
4.90290042793427e-08	0.845133894257049	4.26659941495083e-08	0.00206573635916222	0.846607006638287	2.63753283209851e-10	0.999999999994938
1.82215438136793e-08	0.80366504831158	1.78340820866931e-08	0.00225471081235068	0.805133180734986	2.65837229120276e-12	0.999999999992972
4.73449331282602e-08	0.284890209400889	3.18447541813436e-08	0.00206840481685483	0.808166776706798	4.05949074947464e-10	0.999999999996061
1.09692979675704e-08	0.504203767689845	1.91188777015599e-09	0.00206788476221373	0.706912076703946	4.06894266747559e-11	0.99999999999973
4.34112012988195e-08	0.458125660334097	6.46770375936903e-09	0.00207007623328698	0.625303714142111	1.01347377674089e-10	0.999999999992636
1.16509068624767e-07	0.598772124413396	1.83783072861908e-08	0.00207311616484422	0.649412674861061	1.72090788969858e-10	0.999999999982887
1.72904399298124e-08	0.58859841513479	5.56864060572789e-09	0.00206902943325815	0.834770114923498	4.44826394221343e-11	0.999999999998404
1.95167889112074e-07	0.680051903362475	4.07870548730064e-08	0.0021048787521164	0.758987053084469	3.35901569072651e-10	0.999999999999464
1.06657670445553e-08	0.705185947467634	5.468246700687e-09	0.00206717328235464	0.852353580488024	9.79781097317382e-11	0.999999999997673
3.38906655480421e-08	0.675066389889348	5.7356420037523e-09	0.00206939927716748	0.864714866878808	3.50701456652884e-10	0.999999999999926
4.72130896241037e-09	0.193480077858215	4.09642232386814e-09	0.00206639690357456	0.193772609031377	2.22379321541448e-11	0.999999999992884
3.55665252909232e-08	0.620669750121032	1.90641809388101e-08	0.00206864461846135	0.622207402604423	3.55684392133601e-11	0.999999999999635
3.43643575170166e-08	0.508032144170851	3.05576064051123e-08	0.0020666442030495	0.537473527046566	5.41317633959989e-12	0.999999999991207
2.07413577081273e-08	0.517006009937055	1.78794895322523e-08	0.00206609160101216	0.723546217083115	4.25770563404542e-11	0.999999999977351
2.9634111809255e-08	0.678167734702809	2.87136255305397e-08	0.00207005922065176	0.680058941948453	4.86294997869349e-11	0.999999999997674
2.70007729246723e-08	0.777109777637737	2.23198659183296e-08	0.00211784135373727	0.821904778895813	2.72480529179635e-10	0.999999999999417
1.21638582096581e-05	0.685066257234478	3.90995182181942e-06	0.00201558375343728	0.685516429216796	4.73765370536012e-08	0.999999999999993
6.21341332802845e-08	0.45153366532873	4.28836207599489e-08	0.00205228864113157	0.630886659065685	2.01031448944481e-10	0.999999999976095
1.19446880731148e-06	0.00204849378641721	5.41758686583886e-10	0.00204660358124349	0.00250002927315376	1.32657483581135e-07	0.926358671695374
4.23724996341138e-07	0.76589882078562	1.07976473375288e-07	0.00231084075578484	0.772123021534594	4.222800306051e-09	0.99999999999554
9.76490929801592e-09	0.611133237912937	3.40654501481527e-09	0.00206753317060016	0.624278286034974	1.35688861199835e-11	0.999999999991987
0.000185800168507657	0.000206604414024173	1.51257663200075e-10	2.08040548465085e-05	0.00249987187225613	2.06444402710859e-05	1.00090667437022e-05
4.87431144092831e-09	0.486985270937825	1.01147265793908e-09	0.00206873578985202	0.494229783529316	2.1163667211661e-12	0.999999999999217
1.58678140422157e-08	0.458475824861338	3.728478508397e-09	0.00206665340523142	0.822538576890515	6.73647051811321e-11	0.999999999992949
7.78797943133767e-07	0.00201714819466376	1.00271036821046e-09	0.00201517307886584	0.00243247068677390	8.6420943116519e-08	0.946415585057681
1.79734244345473e-07	0.618114350664356	8.41196223101054e-08	0.00209424634015987	1.09808725088463	1.36311179064841e-09	0.999999999999325
4.04750622932535e-06	0.00202435649740235	9.55231839434103e-11	0.00202030658534268	0.00249780762721203	4.49711157881299e-07	0.878051982789172
3.27944009298396e-08	0.710329613922295	2.02989735589882e-08	0.00206702754480486	0.713789321637634	4.43500632164969e-12	0.99999999998325
3.6211203640154e-08	0.486990872484964	2.23029819494578e-08	0.00206834819984283	0.925447188571729	1.43913590315638e-10	0.999999999999852
1.52117049757253e-08	0.499368102973816	5.70289700988348e-09	0.00206632041653347	0.688163413575525	6.86450078797379e-11	0.99999999998881
2.14084286484963e-08	0.669902287842233	1.64604388157258e-08	0.00206787121557579	0.675669448264383	3.05725070183645e-11	0.99999999999783
4.64383080200508e-05	0.00188125145190771	2.92580309919556e-10	0.00183481310287054	0.00250971056566956	5.15977640139516e-06	0.571340025768215
3.11099577796555e-08	0.319299482089934	8.84023352637676e-09	0.00206855023112842	0.441077204370492	1.10446087116967e-09	0.999999999995467
0.000102965203269986	0.0016493488546921	2.58445958349384e-10	0.00154638327053218	0.00250288634336625	1.14405481683120e-05	0.342341363715383
5.87912519479874e-09	0.00301357388024528	2.75211293457077e-10	0.00206603126487256	0.00686204622812863	6.1682829968701e-10	0.999931564740833
8.28694064868836e-08	0.673413934917665	5.55691871872657e-08	0.00206648968616976	0.690994737517309	8.53762213679993e-11	0.99999999999553
2.78964308878308e-08	0.631906605077265	1.87081150212841e-08	0.00206682302780812	1.04912853459322	1.19798263785958e-10	0.999999999998404
0.000186009655330342	0.000206938973112988	1.18525336022574e-09	2.09286186935030e-05	0.00249989443096258	2.06676012144089e-05	2.57319855839169e-06
5.79914576203232e-05	0.00181271191072469	1.15884908131972e-09	0.00175471081855071	0.0024812702174432	6.44334507197721e-06	0.509698530097913
2.0503183260964e-08	0.546450460261978	1.27059638843222e-08	0.00206791702172114	1.14082199649402	8.5751965370755e-12	0.99999999999683
3.66836690280629e-08	0.481874078118496	3.13611734401948e-08	0.00207354422550728	0.990376379663234	2.13707863395726e-10	0.999999999975761
1.77224405556878e-08	0.493128575789259	8.63845133717168e-09	0.00207307974398005	0.493553411995952	3.19150428367562e-11	0.999999999999902
0.000119234853016321	0.00194143059603129	2.65621637099599e-10	0.00182214114564480	0.00258385562559042	1.32482776896270e-05	0.564809333872708
1.91321783130778e-07	0.00205131977291163	2.45737561775750e-10	0.00205112100576657	0.00251498989989795	2.12303674145017e-08	0.981038377325434
2.04970869809e-09	0.61540968024267	1.80692316850342e-10	0.00206758160218205	0.616881623876956	9.88879753424694e-11	0.999999999998682
2.28380664111838e-07	0.495196927735637	2.03520983522517e-07	0.00206484911183903	0.495729865740038	3.10063601627842e-10	0.999999999998029
0.000142663207352814	0.00136226156979156	2.47224893929883e-11	0.00121959537442013	0.00249964872330666	1.58514632925203e-05	0.213308634647407



> ----- Original Message -----
> From: Paul Smith <phhs80 at gmail.com>
> Date: Wednesday, July 4, 2007 6:00 am
> Subject: Re: [R] Fine tunning rgenoud
> To: R-help <r-help at stat.math.ethz.ch>
>
>
> > On 7/4/07, RAVI VARADHAN <rvaradhan at jhmi.edu> wrote:
> >  > Here is another approach: I wrote an R function that would generate
> > interior points as starting values for constrOptim.  This might work
> > better than the LP approach, since the LP approach gives you a
> > starting value that is on the boundary of the feasible region, i.e a
> > vertex of the polyhedron, whereas this new approach gives you points
> > on the interior.  You can generate as many points as you wish, but the
> > approach is brute-force and is very inefficient - it takes on the
> > order of a 1000 tries to find one feasible point.
> >
> >  Thanks again, Ravi. Actually, the LP approach also works here. Let
> >  g(X) >= k be the constraints. Then, by solving a LP problem with the
> >  constraints
> >
> >  g(X) >= (k+0.2)
> >
> >  returns an interior starting value for constrOptim. I am aware that
> >  the new set of constraints may correspond to an impossible linear
> >  system, but it works in many cases.
> >
> >  Paul
> >
> >  > ----- Original Message -----
> >  > From: Paul Smith <phhs80 at gmail.com>
> >  > Date: Tuesday, July 3, 2007 7:32 pm
> >  > Subject: Re: [R] Fine tunning rgenoud
> >  > To: R-help <r-help at stat.math.ethz.ch>
> >  >
> >  >
> >  > > On 7/4/07, Ravi Varadhan <rvaradhan at jhmi.edu> wrote:
> >  > >  > It should be easy enough to check that your solution is valid
> > (i.e.
> >  > > a local
> >  > >  > minimum):  first, check to see if the solution satisfies all the
> >  > >  > constraints; secondly, check to see if it is an interior point
> >  > > (i.e. none of
> >  > >  > the constraints become equality); and finally, if the solution
> > is an
> >  > >  > interior point, check to see whether the gradient there is
> > close to
> >  > > zero.
> >  > >  > Note that if the solution is one of the vertices of the polyhedron,
> >  > > then the
> >  > >  > gradient may not be zero.
> >  > >
> >  > >  I am having bad luck: all constraints are satisfied, but the solution
> >  > >  given by constrOptim is not interior; the gradient is not equal
> > to
> >  > >  zero.
> >  > >
> >  > >  Paul
> >  > >
> >  > >
> >  > >  > -----Original Message-----
> >  > >  > From: r-help-bounces at stat.math.ethz.ch
> >  > >  > [ On Behalf Of Paul Smith
> >  > >  > Sent: Tuesday, July 03, 2007 5:10 PM
> >  > >  > To: R-help
> >  > >  > Subject: Re: [R] Fine tunning rgenoud
> >  > >  >
> >  > >  > On 7/3/07, Ravi Varadhan <rvaradhan at jhmi.edu> wrote:
> >  > >  > > You had indicated in your previous email that you are having
> > trouble
> >  > >  > finding
> >  > >  > > a feasible starting value for constrOptim().  So, you basically
> >  > > need to
> >  > >  > > solve a system of linear inequalities to obtain a starting point.
> >  > >  Have
> >  > >  > you
> >  > >  > > considered using linear programming? Either simplex() in the
> > "boot"
> >  > >  > package
> >  > >  > > or solveLP() in "linprog" would work.  It seems to me that you
> >  > > could use
> >  > >  > any
> >  > >  > > linear objective function in solveLP to obtain a feasible
> >  > > starting point.
> >  > >  > > This is not the most efficient solution, but it might be
> > worth a
> >  > > try.
> >  > >  > >
> >  > >  > > I am aware of other methods for generating n-tuples that satisfy
> >  > > linear
> >  > >  > > inequality constraints, but AFAIK those are not available in
> > R.
> >  > >  >
> >  > >  > Thanks, Ravi. I had already conceived the solution that you suggest,
> >  > >  > actually using "lpSolve". I am able to get a solution for my problem
> >  > >  > with constrOptim, but I am not enough confident that the
> > solution is
> >  > >  > right. That is why I am trying to get a solution with rgenoud,
> > but
> >  > >  > unsuccessfully until now.
> >  > >  >
> >  > >  > Paul
> >  > >  >
> >  > >  >
> >  > >  >
> >  > >  > > -----Original Message-----
> >  > >  > > From: r-help-bounces at stat.math.ethz.ch
> >  > >  > > [ On Behalf Of Paul Smith
> >  > >  > > Sent: Tuesday, July 03, 2007 4:10 PM
> >  > >  > > To: R-help
> >  > >  > > Subject: [R] Fine tunning rgenoud
> >  > >  > >
> >  > >  > > Dear All,
> >  > >  > >
> >  > >  > > I am trying to solve the following maximization problem, but
> > I cannot
> >  > >  > > have rgenoud giving me a reliable solution.
> >  > >  > >
> >  > >  > > Any ideas?
> >  > >  > >
> >  > >  > > Thanks in advance,
> >  > >  > >
> >  > >  > > Paul
> >  > >  > >
> >  > >  > > ----------------------------
> >  > >  > > library(rgenoud)
> >  > >  > >
> >  > >  > > v <- 0.90
> >  > >  > > O1 <- 10
> >  > >  > > O2 <- 20
> >  > >  > > O0 <- v*O1+(1-v)*O2
> >  > >  > >
> >  > >  > > myfunc <- function(x) {
> >  > >  > >   U0 <- x[1]
> >  > >  > >   U1 <- x[2]
> >  > >  > >   U2 <- x[3]
> >  > >  > >   q0 <- x[4]
> >  > >  > >   q1 <- x[5]
> >  > >  > >   q2 <- x[6]
> >  > >  > >   p <- x[7]
> >  > >  > >
> >  > >  > >   if (U0 < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if (U1 < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if (U2 < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if ((U0-(U1+(O1-O0)*q1)) < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if ((U0-(U2+(O2-O0)*q2)) < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if ((U1-(U0+(O0-O1)*q0)) < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if ((U1-(U2+(O2-O1)*q2)) < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if((U2-(U0+(O0-O2)*q0)) < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if((U2-(U1+(O1-O2)*q1)) < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if(p < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if(p > 1)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if(q0 < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if(q1 < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else if(q2 < 0)
> >  > >  > >     return(-1e+200)
> >  > >  > >   else
> >  > >  > >
> >  > >  > return(p*(sqrt(q0)-(O0*q0+U0))+(1-p)*(v*(sqrt(q1)-(O1*q1+U1))+(1-v)*(sqrt(q2
> >  > >  > > )-(O2*q2+U2))))
> >  > >  > >
> >  > >  > > }
> >  > >  > >
> >  > >  > genoud(myfunc,nvars=7,max=T,pop.size=6000,starting.values=runif(7),wait.gene
> >  > >  > > rations=150,max.generations=300,boundary.enforcement=2)
> >  > >  > >
> >  > >  > > ______________________________________________
> >  > >  > > R-help at stat.math.ethz.ch mailing list
> >  > >  > >
> >  > >  > > PLEASE do read the posting guide
> >  > >  >
> >  > >  > > and provide commented, minimal, self-contained, reproducible
> > code.
> >  > >  > >
> >  > >  >
> >  > >  > ______________________________________________
> >  > >  > R-help at stat.math.ethz.ch mailing list
> >  > >  >
> >  > >  > PLEASE do read the posting guide
> >  > >  > and provide commented, minimal, self-contained, reproducible code.
> >  > >  >
> >  > >
> >  > >  ______________________________________________
> >  > >  R-help at stat.math.ethz.ch mailing list
> >  > >
> >  > >  PLEASE do read the posting guide
> >  > >  and provide commented, minimal, self-contained, reproducible code.
> >  >
> >  >
> >
> >  ______________________________________________
> >  R-help at stat.math.ethz.ch mailing list
> >
> >  PLEASE do read the posting guide
> >  and provide commented, minimal, self-contained, reproducible code.
>



More information about the R-help mailing list