[R] nnet question

Wensui Liu liuwensui at gmail.com
Mon Jan 29 02:38:52 CET 2007


AM,
Don't worry. It is correct to get different correlation each time.
Unless you are very lucky, you will get different prediction for each
different training process, depending on your initial random state.

Take a look at Dr Ripley's MASS book, there are several excellent
examples on how to use nnet.

On 1/28/07, Aimin Yan <aiminy at iastate.edu> wrote:
> Hello,
> I use nnet to do prediction for a continuous variable.
> after that, I calculate correlation coefficient between predicted value and
> real observation.
>
> I run my code(see following) several time, but I get different correlation
> coefficient each time.
>
> Anyone know why?
>
> In addition, How to calculate prediction accuracy for prediction of
> continuous variable?
>
> Aimin
> thanks,
>
>
>  > m.nn.omega <- nnet(omega~aa_three+bas+bcu+aa_ss, data=training, size=2,
> linout=TRUE)
> # weights:  57
> initial  value 89153525.582093
> iter  10 value 15036439.951888
> iter  20 value 15010796.121891
> iter  30 value 15000761.804392
> iter  40 value 14955839.294531
> iter  50 value 14934746.564215
> iter  60 value 14933978.758615
> iter  70 value 14555668.381007
> iter  80 value 14553072.231507
> iter  90 value 14031071.223996
> iter 100 value 13709055.312482
> final  value 13709055.312482
> stopped after 100 iterations
>  > pr.nn.train<-predict(m.nn.omega,training)
>  > corr.pr.nn.train<-round(cor(pr.nn.train,training$omega),2)
>  > pr.nn.test<-predict(m.nn.omega,test)
>  > corr.pr.nn.test<-round(cor(pr.nn.test,test$omega),2)
>  > cat("correlation coefficient for train using neural
> network:",corr.pr.nn.train,"\n")
> correlation coefficient for train using neural network: 0.32
>  > cat("correlation coefficient for test using neural
> network:",corr.pr.nn.test,"\n")
> correlation coefficient for test using neural network: 0.39
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>


-- 
WenSui Liu
A lousy statistician who happens to know a little programming
(http://spaces.msn.com/statcompute/blog)



More information about the R-help mailing list