[R] Is there a function for this?
Gabor Grothendieck
ggrothendieck at gmail.com
Wed Jan 3 16:24:02 CET 2007
Try this:
> actual <- factor(c("good", "good", "bad", "bad", "good", "good", "bad", "bad"))
> pred <- factor(c("good", "bad", "bad", "bad", "good", "good", "good", "bad"))
> table(actual, pred)
pred
actual bad good
bad 3 1
good 1 3
> prop.table(table(actual, pred), 1)
pred
actual bad good
bad 0.75 0.25
good 0.25 0.75
> prop.table(table(actual, pred), 2)
pred
actual bad good
bad 0.75 0.25
good 0.25 0.75
> library(gmodels)
> CrossTable(actual, pred)
Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
| N / Table Total |
|-------------------------|
Total Observations in Table: 8
| pred
actual | bad | good | Row Total |
-------------|-----------|-----------|-----------|
bad | 3 | 1 | 4 |
| 0.500 | 0.500 | |
| 0.750 | 0.250 | 0.500 |
| 0.750 | 0.250 | |
| 0.375 | 0.125 | |
-------------|-----------|-----------|-----------|
good | 1 | 3 | 4 |
| 0.500 | 0.500 | |
| 0.250 | 0.750 | 0.500 |
| 0.250 | 0.750 | |
| 0.125 | 0.375 | |
-------------|-----------|-----------|-----------|
Column Total | 4 | 4 | 8 |
| 0.500 | 0.500 | |
-------------|-----------|-----------|-----------|
On 1/3/07, Feng Qiu <hustqiufeng at sohu.com> wrote:
> Hi everybody, I'm trying to do a statistic on the error rate of a prediction
> algorithm.
>
> suppose this is the real category
> [good, good, bad, bad, good, good, bad, bad]
> this is the predicted category
> [good, bad, bad, bad, good, good, good, bad]
>
> I'm trying to do a statistic on the error rate for each group("good","bad"):
> what percentage of instances are predicted incorrectly for each group ?
> Of course I can write a loop to do that, but is there a easy way to do that?
>
> Thank you!
>
> Best,
>
> Feng
>
More information about the R-help
mailing list