[R] error using user-defined link function with mixed models (LMER)
Jessi Brown
jessilbrown at gmail.com
Sat Feb 10 20:45:39 CET 2007
Greetings, everyone. I've been trying to analyze bird nest survival
data using generalized linear mixed models (because we documented
several consecutive nesting attempts by the same individuals; i.e.
repeated measures data) and have been unable to persuade the various
GLMM models to work with my user-defined link function. Actually,
glmmPQL seems to work, but as I want to evaluate a suite of competing
models, I'd like to use ML or REML estimation methods in order to end
up with meaningful log-likelihoods.
Here's the link function I use:
logexp <- function(days = 1)
{
linkfun <- function(mu) qlogis(mu^(1/days))
linkinv <- function(eta) plogis(eta)^days
mu.eta <- function(eta)
days*.Call("logit_mu_eta", eta,
PACKAGE = "stats")*plogis(eta)^(days-1)
valideta <- function(eta) TRUE
link <- paste("logexp(", days, ")", sep="")
structure(list(linkfun = linkfun, linkinv = linkinv,
mu.eta = mu.eta, valideta = valideta, name = link),
class = "link-glm")
}
# Modified binomial family function (that allows logexp link function)
logexposure<-function (link="logexp",ExposureDays) {
variance <- function(mu) mu * (1 - mu)
validmu <- function(mu) all(mu > 0) && all(mu < 1)
dev.resids <- function(y, mu, wt) .Call("binomial_dev_resids",
y, mu, wt, PACKAGE = "stats")
aic <- function(y, n, mu, wt, dev) {
m <- if (any(n > 1))
n
else wt
-2 * sum(ifelse(m > 0, (wt/m), 0) * dbinom(round(m *
y), round(m), mu, log = TRUE))
}
initialize <- expression({
if (NCOL(y) == 1) {
if (is.factor(y)) y <- y != levels(y)[1]
n <- rep.int(1, nobs)
if (any(y < 0 | y > 1)) stop("y values must be 0 <= y <= 1")
mustart <- (weights * y + 0.5)/(weights + 1)
m <- weights * y
if (any(abs(m - round(m)) > 0.001))
warning("non-integer successes in a binomial glm!")
} else if (NCOL(y) == 2) {
if (any(abs(y - round(y)) > 0.001))
warning("non-integer counts in a binomial glm!")
n <- y[, 1] + y[, 2]
y <- ifelse(n == 0, 0, y[, 1]/n)
weights <- weights * n
mustart <- (n * y + 0.5)/(n + 1)
} else stop("for the binomial family,",
" y must be a vector of 0 and 1's\n",
"or a 2 column matrix where col 1 is",
" no. successes and col 2 is no. failures")
})
structure(list(family="binomial", link=logexp(ExposureDays),
linkfun=logexp(ExposureDays)$linkfun,
linkinv=logexp(ExposureDays)$linkinv, variance=variance,
dev.resids=dev.resids, aic=aic,
mu.eta=logexp(ExposureDays)$mu.eta, initialize=initialize,
validmu=validmu, valideta=logexp$valideta), class = "family")
}
Now, here's how it works in a GLM:
> apfa.glm.1<-glm(Success~MeanAge+I(MeanAge^2), family=logexposure(link="logexp", ExposureDays=apfa4$Days), data=apfa4)
> summary(apfa.glm.1)
Call:
glm(formula = Success ~ MeanAge + I(MeanAge^2), family =
logexposure(link = "logexp",
ExposureDays = apfa4$Days), data = apfa4)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.1525 0.2802 0.3637 0.4291 0.7599
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.5594830 0.6085542 9.136 <2e-16 ***
MeanAge -0.0908251 0.0407218 -2.230 0.0257 *
I(MeanAge^2) 0.0014926 0.0006104 2.445 0.0145 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 323.58 on 661 degrees of freedom
Residual deviance: 285.65 on 659 degrees of freedom
AIC: 291.65
Number of Fisher Scoring iterations: 6
Next, here's the results of a glmmPQL run:
> apfa.glmm.1<-glmmPQL(Success~MeanAge+I(MeanAge^2), random=~1|Territory, family=logexposure(link="logexp", ExposureDays=apfa4$Days), data=apfa4)
iteration 1
> summary(apfa.glmm.1)
Linear mixed-effects model fit by maximum likelihood
Data: apfa4
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | Territory
(Intercept) Residual
StdDev: 0.0003431913 1.051947
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: Success ~ MeanAge + I(MeanAge^2)
Value Std.Error DF t-value p-value
(Intercept) 5.559466 0.6416221 624 8.664705 0.0000
MeanAge -0.090824 0.0429346 624 -2.115397 0.0348
I(MeanAge^2) 0.001493 0.0006436 624 2.319090 0.0207
Correlation:
(Intr) MeanAg
MeanAge -0.927
I(MeanAge^2) 0.826 -0.968
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-11.3646020 0.1901969 0.2485473 0.2951632 0.5499915
Number of Observations: 662
Number of Groups: 36
Finally, here's what happens when I try to run an LMER model (same
error messages no matter which estimation method I choose):
> apfa.lmer.1<-lmer(Success~MeanAge+I(MeanAge^2)+(1|Territory), data=apfa4, family=logexposure(link="logexp", ExposureDays=apfa4$Days), method="Laplace")
> summary(apfa.lmer.1)
Error in if (any(sd < 0)) return("'sd' slot has negative entries") :
missing value where TRUE/FALSE needed
> names(apfa.lmer.1)
NULL
So, does anyone have any idea as to whether the problem is in the
user-defined link function as written, or have any thoughts about how
to get around this problem? If LMER and LME can't do it, could there
be some way to trick the glmmML function into accepting the
user-defined link function?
Thank you in advance for any help or advice.
cheers, Jessi Brown
More information about the R-help
mailing list