[R] sem vs. LISREL: sem fails

John Fox jfox at mcmaster.ca
Tue Apr 10 22:34:58 CEST 2007


Dear Dimitri,

Using the tools provided in the sem package [e.g., the debug argument to
sem()], I took a closer look at this convergence problem, which arises
because of poor start values selected for the variances of the latent
variables. It turns out that you can get a solution for your original model
fit to the covariance matrix by setting the argument par.size to
"startvalues" (as suggested in ?sem): 

sem.anxiety <- sem(model, COVAR, N=150, par.size="startvalues")

Regards,
 John

--------------------------------
John Fox
Department of Sociology
McMaster University
Hamilton, Ontario
Canada L8S 4M4
905-525-9140x23604
http://socserv.mcmaster.ca/jfox 
-------------------------------- 

> -----Original Message-----
> From: John Fox [mailto:jfox at mcmaster.ca] 
> Sent: Monday, April 09, 2007 9:46 PM
> To: 'John Smith'
> Cc: 'r-help at stat.math.ethz.ch'
> Subject: RE: [R] sem vs. LISREL: sem fails
> 
> Dear Dimitri,
> 
> You haven't done anything wrong: Your model is a 
> straightforward confirmatory factor analysis and it is 
> correctly specified. I suspect that sem() is picking poor 
> start values.
> 
> I can get a solution by specifying two alternative models 
> that are equivalent to yours:
> 
> (1) Rescaling the problem by using correlation-matrix input:
> 
> sem.anxiety <- sem(model, KM, N=150)
> 
> (2) Fixing the variances of the factors (latent variables) 
> rather than using reference indicators:
> 
> model.2 <- specify.model()
> ANXIETY -> a1,      lam_anx_1,  NA
> ANXIETY -> a2,      lam_anx_2,  NA
> ANXIETY -> a3,      lam_anx_3,  NA
> DEPRESS -> d1,      lam_dep_1,  NA
> DEPRESS -> d2,      lam_dep_2,  NA
> DEPRESS -> d3,      lam_dep_3,  NA
> FEAR -> f1,         lam_fear_1, NA
> FEAR -> f2,         lam_fear_2, NA
> FEAR -> f3,         lam_fear_3, NA
> a1 <-> a1,          theta_a1,   NA
> a2 <-> a2,          theta_a2,   NA
> a3 <-> a3,          theta_a3,   NA
> d1 <-> d1,          theta_d1,   NA
> d2 <-> d2,          theta_d2,   NA
> d3 <-> d3,          theta_d3,   NA
> f1 <-> f1,          theta_f1,   NA
> f2 <-> f2,          theta_f2,   NA
> f3 <-> f3,          theta_f3,   NA
> ANXIETY <-> ANXIETY,NA,         1
> DEPRESS <-> DEPRESS,NA,         1
> FEAR <-> FEAR,      NA,         1
> ANXIETY <-> FEAR,   phi_AF,     NA
> ANXIETY <-> DEPRESS,phi_AD,     NA
> DEPRESS <-> FEAR,   phi_DF,     NA
> 
> # Running the estimation using sem:
> sem.anxiety.2 <- sem(model.2, COVAR, N=150)
> 
> 
> A couple of small points unrelated to the problem you 
> experienced: (1) You didn't need to load the MASS package, 
> since you didn't appear to use anything in it; (2) comments 
> in R are prefixed by #, not !.
> 
> I hope this helps,
>  John
> 
> --------------------------------
> John Fox
> Department of Sociology
> McMaster University
> Hamilton, Ontario
> Canada L8S 4M4
> 905-525-9140x23604
> http://socserv.mcmaster.ca/jfox
> -------------------------------- 
> 
> > -----Original Message-----
> > From: r-help-bounces at stat.math.ethz.ch 
> > [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of John Smith
> > Sent: Monday, April 09, 2007 5:28 PM
> > To: r-help at stat.math.ethz.ch
> > Subject: [R] sem vs. LISREL: sem fails
> > 
> > I am new to R. 
> > I just tried to recreate in R (using sem package and the identical 
> > input data) a solution for a simple measurment model I have found 
> > before in LISREL. LISREL had no problems and converged in just 3 
> > iterations.
> > In sem, I got no solution, just the warning message:
> > 
> > "Could not compute QR decomposition of Hessian.
> > Optimization probably did not converge.
> >  in: sem.default(ram = ram, S = S, N = N, param.names = pars, 
> > var.names = vars, "
> > 
> > What does it mean? Maybe I am doing something wrong?
> > 
> > I have 3 latent factors (Anxiety, Depression, and Fear) - 
> each of them 
> > has 3 observed indicators (a1, a2, a3; d1, d2, d3, and f1, f2, f3) 
> > Below is my script in R:
> > 
> > ! ANALYSIS OF ANXIETY, DEPRESSION, AND FEAR - LISREL P.31
> > 
> > ! Creating the ANXIETY, DEPRESSION, AND FEAR 
> intercorrelation matrix 
> > (KM):
> > KM<-matrix(
> > c(1,.8,.83,.2,.21,.19,.18,.18,.18,
> > 0,1,.81,.22,.24,.18,.19,.19,.21,
> > 0,0,1,.22,.19,.2,.2,.2,.22,
> > 0,0,0,1,.84,.82,.22,.22,.21,
> > 0,0,0,0,1,.84,.19,.18,.19,
> > 0,0,0,0,0,1,.18,.18,.18,
> > 0,0,0,0,0,0,1,.84,.82,
> > 0,0,0,0,0,0,0,1,.81,
> > 0,0,0,0,0,0,0,0,1), 9, 9)
> > 
> > ! Creating the ANXIETY, DEPRESSION, AND FEAR Standard Deviations 
> > vector (SD):
> > SD<-c(1.5, 2.4, 3.2, 2.3, 2.3, 2.6, 4.5, 4.7, 5.6)
> > 
> > ! Calculating the Var-Covar matrix based on correlations and SDs:
> > library(MASS)
> > COVAR<-outer(SD, SD) * KM
> > 
> > ! Creating variable names
> > rownames(COVAR)<-colnames(COVAR)<-c('a1','a2','a3','d1','d2','
> > d3','f1','f2','f3')
> > 
> > ! Specifying the measurement model to estimate:
> > model<-specify.model()
> > ANXIETY -> a1,     NA, 1
> > ANXIETY -> a2,     lam_anx_2, NA 
> > ANXIETY -> a3,     lam_anx_3, NA
> > DEPRESS -> d1,     NA, 1
> > DEPRESS -> d2,     lam_dep_2, NA
> > DEPRESS -> d3,     lam_dep_3, NA
> > FEAR -> f1,             NA, 1
> > FEAR -> f2,             lam_fear_2, NA
> > FEAR -> f3,             lam_fear_3, NA
> > a1 <-> a1,                theta_a1, NA
> > a2 <-> a2,                theta_a2, NA
> > a3 <-> a3,                theta_a3, NA
> > d1 <-> d1,               theta_d1, NA
> > d2 <-> d2,               theta_d2, NA
> > d3 <-> d3,               theta_d3, NA
> > f1 <-> f1,                 theta_f1, NA
> > f2 <-> f2,                 theta_f2, NA
> > f3 <-> f3,                 theta_f3, NA
> > ANXIETY <-> ANXIETY,   phi_AA, NA
> > DEPRESS <-> DEPRESS,     phi_DD, NA
> > FEAR <-> FEAR,                  phi_FF, NA
> > ANXIETY <-> FEAR,           phi_AF, NA
> > ANXIETY <-> DEPRESS,    phi_AD, NA
> > DEPRESS <-> FEAR,            phi_DF, NA
> > 
> > ! Running the estimation using sem:
> > sem.anxiety<-sem(model, COVAR, N=150)
> > 
> > Thank you very much for your advice!
> > Dimitri
> > 
> >



More information about the R-help mailing list