[R] Logit regression using MLE
Peter Dalgaard
p.dalgaard at biostat.ku.dk
Sun Jan 29 23:17:32 CET 2006
"Martin" <martin.chlond at btinternet.com> writes:
> I have used the following code to obtain a max likelihood estimator for
> a logit regression. The final command invokes optim to obtain the
> parameter estimates. The code works OK but I want to use the mle
> function in the stats4 package instead of directly calling optim.
> Can someone please figure out the command to do this?
>
You need to make sure that the loglikelihood you pass to mle is a
function of the parameters only, and you have to string out the
parameter vector:
ll <- eval(function(beta0=0,beta1=0)
log.lo.like (c(beta0,beta1),Y,X),
list(X=X,Y=Y))
summary(mle(ll))
glm(Y~X-1,family=binomial)
>
> Thank you in advance.
>
>
>
> Martin
>
>
>
> # mlelo.r - maximum likelihood estimation for logit regression
>
>
>
> # log-likelihood function (returns negative to minimise)
>
> log.lo.like <- function(beta,Y,X) {
>
> Fbetax <- 1/(1+exp(-beta%*%t(X)))
>
> loglbeta <- -log(prod(Fbetax^Y*(1-Fbetax)^(1-Y)))
>
> }
>
>
>
> # data
>
> Y <- c(0,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,0,1,1,0,1)
>
> X <-
> cbind(matrix(1,21,1),matrix(c(-48.5,24.4,82.8,-24.6,-31.6,91.0,52.1,-87.7,
> -17.0,-51.5,-90.7,65.5,-44.0,-7.0,51.6,32.4,-61.8,34.0,27.9,-72.9,49.9),
> 21,1))
>
>
>
> # maximum likelihood estimator
>
> mle.res <- optim(c(0,0),log.lo.like,Y=Y, X=X)
>
--
O__ ---- Peter Dalgaard Øster Farimagsgade 5, Entr.B
c/ /'_ --- Dept. of Biostatistics PO Box 2099, 1014 Cph. K
(*) \(*) -- University of Copenhagen Denmark Ph: (+45) 35327918
~~~~~~~~~~ - (p.dalgaard at biostat.ku.dk) FAX: (+45) 35327907
More information about the R-help
mailing list