[R] interpreting anova summary tables - newbie
Andrew McDonagh
a.mcdonagh at imperial.ac.uk
Thu Apr 6 10:47:51 CEST 2006
Hello,
Apologies if this is the wrong list, I am a first-time poster here. I
have an experiment in which an output is measured in response to 42
different categories.
I am only interested which of the categories is significantly different
from a reference category.
Here is the summary of the results:
summary(simple.fit)
Call:
lm(formula = as.numeric(as.vector(TNFa)) ~ Mutant.ID, data =
imputed.data)
Residuals:
Min 1Q Median 3Q Max
-238.459 -25.261 -0.868 25.660 309.496
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.0479 10.5971 4.628 5.08e-06 ***
Mutant.IDB 149.8070 23.1632 6.467 3.09e-10 ***
Mutant.IDC 98.7443 23.1632 4.263 2.55e-05 ***
Mutant.IDD 97.2203 23.1632 4.197 3.37e-05 ***
Mutant.IDE 118.9820 23.1632 5.137 4.49e-07 ***
Mutant.IDF 241.8537 23.1632 10.441 < 2e-16 ***
Mutant.IDG 107.4883 23.1632 4.640 4.80e-06 ***
Mutant.IDH 105.7664 23.1632 4.566 6.74e-06 ***
Mutant.IDI 517.4650 23.1632 22.340 < 2e-16 ***
Mutant.IDJ 19.7777 23.1632 0.854 0.393735
Mutant.IDK 47.4240 23.1632 2.047 0.041313 *
Mutant.IDL 3.2542 23.1632 0.140 0.888347
Mutant.IDM 180.9638 23.1632 7.813 5.63e-14 ***
Mutant.IDN 19.0582 23.1632 0.823 0.411155
Mutant.IDO 61.8684 23.1632 2.671 0.007891 **
Mutant.IDP -0.5306 23.1632 -0.023 0.981738
Mutant.IDQ -10.6972 23.1632 -0.462 0.644478
Mutant.IDR 1.5377 23.1632 0.066 0.947107
Mutant.IDS 14.6333 23.1632 0.632 0.527934
Mutant.IDT 48.8900 23.1632 2.111 0.035458 *
Mutant.IDU 58.9597 23.1632 2.545 0.011313 *
Mutant.IDV 81.7657 23.1632 3.530 0.000467 ***
Mutant.IDW 82.9576 23.1632 3.581 0.000386 ***
Mutant.IDY 49.1926 23.1632 2.124 0.034343 *
Mutant.IDZ 51.0381 23.1632 2.203 0.028170 *
Mutant.IDZA 116.0487 23.1632 5.010 8.38e-07 ***
Mutant.IDZB 56.4402 23.1632 2.437 0.015287 *
Mutant.IDZC -14.5305 23.1632 -0.627 0.530838
Mutant.IDZD -5.0069 23.1632 -0.216 0.828983
Mutant.IDZE 9.1176 23.1632 0.394 0.694080
Mutant.IDZF 232.2879 23.1632 10.028 < 2e-16 ***
Mutant.IDZG -27.1671 23.1632 -1.173 0.241595
Mutant.IDZH 0.8757 23.1632 0.038 0.969862
Mutant.IDZI 4.7952 23.1632 0.207 0.836108
Mutant.IDZJ -5.5859 23.1632 -0.241 0.809568
Mutant.IDZK -12.9263 23.1632 -0.558 0.577138
Mutant.IDZL 38.8621 23.1632 1.678 0.094224 .
Mutant.IDZM 39.2643 23.1632 1.695 0.090880 .
Mutant.IDZN 73.8419 23.1632 3.188 0.001553 **
Mutant.IDZO 147.7804 23.1632 6.380 5.20e-10 ***
Mutant.IDZP 0.5654 23.1632 0.024 0.980540
Mutant.IDZQ 50.5117 23.1632 2.181 0.029824 *
Mutant.IDZR 217.6824 23.1632 9.398 < 2e-16 ***
Mutant.IDZS 237.3227 23.1632 10.246 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 61.79 on 377 degrees of freedom
Multiple R-Squared: 0.7351, Adjusted R-squared: 0.7049
F-statistic: 24.33 on 43 and 377 DF, p-value: < 2.2e-16
>
My question relates to the meaning of the p-values. Do the p-values
relate to
a) the confidence in the estimate
or
b)the confidence that the non-intercept categories are different to the
intercept
Somebody mentioned to me that the p-value for the intercept is the
confidence in the estimate of the intercept, whereas the remaining
entries are the confidence in each strain being different from the
reference / intercept
Note the contrasts setting is contr.treatment.
Any help would be appreciated
Andrew McDonagh,
PhD Candidate,
Department of Infectious Diseases,
Commonwealth Building,
Hammersmith Hospital,
Du Cane Road,
London W12 ONN
a.mcdonagh at imperial.ac.uk
More information about the R-help
mailing list