[R] nls() fit to Kahnemann/ Tversky function
Mark Hempelmann
neo27 at t-online.de
Mon Oct 31 23:14:07 CET 2005
Dear WizaRds,
I would like to fit a curve to ten points with nls() for one
unknown parameter gamma in the Kahnemann/ Tversky function, but somehow
it won't work and I am unable to locate my mistake.
p.kum <- seq(0.1,1, by=0.1)
felt.prob.kum <- c(0.16, 0.23, 0.36, 0.49, 0.61, 0.71, 0.85, 0.89, 0.95,
1) ## how to find a function that fits these points nicely?
plot(p.kum, felt.prob.kum) ## looks a little like an "S"
gamma <- rep(0.5, 10)
nls.dataframe <- data.frame(p.kum,felt.prob.kum, gamma)
nls.kurve <- nls( formula = felt.prob.kum ~
p.kum^gamma/(p.kum^gamma+(1-p.kum)^gamma)^(1/gamma), data=nls.dataframe,
start=c(gamma=gamma), algorithm="plinear" )
summary(nls.kurve)
gives: Error in La.chol2inv(x, size) : 'size' cannot exceed nrow(x) = 10
If I go with the Gauss-Newton algorithm I get an singular gradient
matrix error, so I tried the Golub-Pereyra algorithm for partially
linear least-squares.
It also seems the nls model tries to find ten different gammas, but
I want only one single gamma parameter for the function. I appreciate
your help and support. Thank you.
sol lucet omnibus
Mark Hempelmann
More information about the R-help
mailing list