[R] AIC in lmer

vito muggeo vmuggeo at dssm.unipa.it
Fri Oct 7 17:23:00 CEST 2005


Hi,
my reply just concerns the usage of AIC in mixed models and not the lmer 
package.

The "standard" AIC is actually unconditional.

Vaida and Blanchard (2003, Proceeding 19 IWSM,101-105) discuss that a 
"conditional" version should be more appropriate in a mixed framework.

I don't whether the paper has been pubblished elsewhere.

regards,
vito




Richard Chandler wrote:
> Hello all,
> 
> Is AIC calculated incorrectly in lmer? It appears as though it uses
> AIC = -2*logLik - 2*#parms, instead of -2*LogLik + 2*#parms? Below is
> output from one of many models I have tried:
> 
> Generalized linear mixed model fit using PQL 
> Formula: cswa ~ pcov.ess1k + (1 | year) 
>    Data: ptct50.5 
>  Family: poisson(log link)
>       AIC    BIC    logLik deviance
>  224.8466 219.19 -114.4233 228.8466
> Random effects:
>      Groups        Name    Variance    Std.Dev. 
>        year (Intercept)   0.0062643    0.079147 
> # of obs: 125, groups: year, 2
> 
> Estimated scale (compare to 1)  1.277183 
> 
> Fixed effects:
>               Estimate Std. Error  z value Pr(>|z|)
> (Intercept) -0.1059628  0.1283976 -0.82527   0.4092
> pcov.ess1k   0.0101182  0.0093962  1.07683   0.2816
> 
> 
> A snip of my data:
> 
>       cswa pcov.ess250 year
>   [1,]    4        7.14 2004
>   [2,]    4       19.26 2003
>   [3,]    1        3.66 2004
> 
> I'm using R 2.1.1 with Windows XP.
> 
> Thanks,
> Richard
> 

-- 
====================================
Vito M.R. Muggeo
Dip.to Sc Statist e Matem `Vianelli'
Università di Palermo
viale delle Scienze, edificio 13
90121 Palermo - ITALY
tel: 091 6626240
fax: 091 485726/485612




More information about the R-help mailing list