[R] Another Mix Model Question
Spencer Graves
spencer.graves at pdf.com
Tue Jun 21 19:14:08 CEST 2005
To reinforce, Dimitris' excellent suggestion, I'd like to refer you
to sect. 2.4 in Pinheiro and Bates (2000) Mixed-Effects Models in S and
S-Plus (Springer, pp. 92-96). Testing for parameters on a boundary of a
parameter space, as, e.g., whether a variance component is zero,
involves a violation of the assumptions for the stanadard asymptotic
theory. In this section, Pinheiro and Bates compare the output of
simulate.mle with improved theory. I highly recommend this section (and
the book more generally).
spencer graves
Dimitris Rizopoulos wrote:
> AFAIK the COVTEST option just computes a Wald test! Since you want
> test for variance components (which is on the boundary of the
> parameter space), I'd suggest to use a LRT (i.e., anova.lme(model.1,
> model.2)) and moreover consider the simulate.lme() function of the
> "nlme" package.
>
>
> Best,
> Dimitris
>
> ----
> Dimitris Rizopoulos
> Ph.D. Student
> Biostatistical Centre
> School of Public Health
> Catholic University of Leuven
>
> Address: Kapucijnenvoer 35, Leuven, Belgium
> Tel: +32/16/336899
> Fax: +32/16/337015
> Web: http://www.med.kuleuven.be/biostat/
> http://www.student.kuleuven.ac.be/~m0390867/dimitris.htm
>
>
> ----- Original Message -----
> From: "Alfonso M Sanchez-Lafuente" <alfonso at slafuente.net>
> To: <r-help at stat.math.ethz.ch>
> Sent: Tuesday, June 21, 2005 9:57 AM
> Subject: [R] Another Mix Model Question
>
>
>
>>Hi again,
>>
>>thank you for your previous answers. Just another question, though
>>...
>>
>>I get the following variance components after fitting a mixed model.
>>
>>
>>Groups Name Variance Std.Dev. Corr
>>PlantID TreatmCtrl 0.51784 0.71961
>> TreatmNoAccess 4.77469 2.18511 -0.063
>> TreatmNoKeel 4.22726 2.05603 0.513 0.751
>> TreatmNoSpur 0.45918 0.67763 0.158 0.303 0.319
>> TreatmNoStand 3.45357 1.85838 -0.736 -0.070 -0.435
>>0.495
>>PlantID PollClassApis 1.12364 1.06002
>> PollClassBombAnth 0.42769 0.65398 -0.759
>>Residual 3.09669 1.75974
>>
>>My question is: if n random effects are included in a model, how can
>>I
>>test the hypothesis that the variance of such effects is 0 ?
>>
>>Some sort of COVTEST option in Proc MIXED in SAS (sorry, SAS is
>>still
>>more familar to me than R).
>>
>>--
>>
>>----------------------------------------------
>>Alfonso M. Sanchez-Lafuente
>>Departamento de Biologia Vegetal y Ecologia
>>Facultad de Biologia
>>Universidad de Sevilla
>>Avd. Reina Mercedes 9
>>E-41012, Sevilla, Spain
>>email: alfonso at slafuente.net / slafuente at us.es
>>
>>______________________________________________
>>R-help at stat.math.ethz.ch mailing list
>>https://stat.ethz.ch/mailman/listinfo/r-help
>>PLEASE do read the posting guide!
>>http://www.R-project.org/posting-guide.html
>>
>
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
--
Spencer Graves, PhD
Senior Development Engineer
PDF Solutions, Inc.
333 West San Carlos Street Suite 700
San Jose, CA 95110, USA
spencer.graves at pdf.com
www.pdf.com <http://www.pdf.com>
Tel: 408-938-4420
Fax: 408-280-7915
More information about the R-help
mailing list