[R] how to get the group mean deviation data ?
ronggui
0034058 at fudan.edu.cn
Mon Jul 25 08:07:50 CEST 2005
> n=10;t=3
> d<-cbind(id=rep(1:n,each=t),y=rnorm(n*t),x=rnorm(n*t),z=rnorm(n*t))
> head(d)
id y x z
[1,] 1 -2.1725379 0.07629954 -0.3985258
[2,] 1 -1.2383038 -2.49667038 0.6966127
[3,] 1 -1.2642401 -0.50613307 0.4895856
[4,] 2 0.2171246 0.86711864 -0.6660036
[5,] 2 2.2765760 -0.48547142 -1.4496664
[6,] 2 0.5985345 -1.06427035 2.1761071
first,i want to get the group mean of each variable,which i can use
> d<-data.frame(d)
> aggregate(d,list(d$id),mean)[,-1]
id y x z
1 1 -1.55836060 -0.9755013 0.26255754
2 2 1.03074502 -0.2275410 0.02014565
3 3 0.20700121 -0.7159450 1.35890176
4 4 0.17839650 1.2575891 0.04135165
5 5 -0.20012508 0.4310221 0.55458899
6 6 -0.13084185 -0.2953392 0.28229068
7 7 0.20737288 -0.8863761 -0.50793880
8 8 0.07512612 -0.6591304 -0.21656533
9 9 0.94727796 -0.6108891 0.13529884
10 10 -0.04434875 0.1332086 -0.88229808
then i want the group mean deviation data,like
> head(sapply(d[,2:4],function(x) x-ave(x,d$id)))
y x z
[1,] -0.6141773 1.0518008 -0.6610833
[2,] 0.3200568 -1.5211691 0.4340552
[3,] 0.2941205 0.4693682 0.2270281
[4,] -0.8136205 1.0946597 -0.6861493
[5,] 1.2458310 -0.2579304 -1.4698121
[6,] -0.4322105 -0.8367293 2.1559614
both above are what i want.though i can do it use the function to do it.but if n id quite large,say n=1000 and t=3, it require too much time.so i want to know any more efficient way to do it?
myfun<-function(x,id)
{
x<-as.matrix(x)
id<-as.factor(id)
xm<- apply(x,2,function(y,z) tapply(y,z, mean), z=id)
xdm<- x[] <- x-xm[id,]
re<-list(xm=xm, xdm=xdm)
re
}
More information about the R-help
mailing list