[R] Calculation of group summaries
Gabor Grothendieck
ggrothendieck at gmail.com
Fri Jul 15 04:55:57 CEST 2005
There was an error in my code (after advising you to use data.frame
rather than cbind I used it myself!). Here it is again:
nsites <- 6
yearList <- 1999:2001
fakesub <- data.frame(
year = rep(yearList, nsites/length(yearList), each = 11),
site_id = rep(c('site1','site2'), each = 11*nsites),
visit_no = rep(1, 11*2*nsites),
transect = rep(LETTERS[1:11], nsites, each = 2),
transdir = rep(c('LF','RT'), 11*nsites),
undercut = abs(rnorm(11*2*nsites, 10)),
angle = runif(11*2*nsites, 0, 180)
)
f <- function(x) data.frame(year = x[1,1], site_id = x[1,2], visit_no = x[1,3],
mean = mean(x[,6]), sd = sd(x[,6]), length = length(x[,6]))
do.call("rbind", by(fakesub, fakesub[,1:3], f))
On 7/14/05, Gabor Grothendieck <ggrothendieck at gmail.com> wrote:
> 1. Try using more spaces so your code is easier to read.
>
> 2. Use data.frame to define your data frame (since the method
> in your post creates data frames of factors rather than
> the desired classes).
>
> 3. Given the appropriate function, f, a single 'by' statement rbind'ed
> together, as shown, will create the result.
>
> nsites <- 6
> yearList <- 1999:2001
> fakesub <- data.frame(
> year = rep(yearList, nsites/length(yearList), each = 11),
> site_id = rep(c('site1','site2'), each = 11*nsites),
> visit_no = rep(1, 11*2*nsites),
> transect = rep(LETTERS[1:11], nsites, each = 2),
> transdir = rep(c('LF','RT'), 11*nsites),
> undercut = abs(rnorm(11*2*nsites, 10)),
> angle = runif(11*2*nsites, 0, 180)
> )
>
>
> f <- function(x) cbind(year = x[1,1], site_id = x[1,2], visit_no = x[1,3],
> mean = mean(x[,6]), sd = sd(x[,6]), length = length(x[,6]))
> do.call("rbind", by(fakesub, fakesub[,1:3], f))
>
>
>
>
>
> On 7/14/05, Seeliger.Curt at epamail.epa.gov <Seeliger.Curt at epamail.epa.gov> wrote:
> > Several people suggested specific functions (by, tapply, sapply and
> > others); thanks for not blowing off a simple question regarding how to
> > do the following SQL in R:
> > > select year,
> > > site_id,
> > > visit_no,
> > > mean(undercut) AS meanUndercut,
> > > count(undercut) AS nUndercut,
> > > std(undercut) AS stdUndercut
> > > from channelMorphology
> > > group by year, site_id, visit_no
> > > ;
> >
> > I'd spent quite a bit of time with the suggested functions earlier but
> > had no luck as I'd misread the docs and put the entire dataframe where
> > it only wants the columns to be processed. Sometimes it's the simplest
> > of things.
> >
> > This has lead to another confoundment-- sd() acts differently than
> > mean() for some reason, at least with R 1.9.0. For some reason, means
> > generate NA results and a warning message for each group:
> >
> > argument is not numeric or logical: returning NA in:
> > mean.default(data[x, ], ...)
> >
> > Of course, the argument is numeric, or there'd be no sd value. Or more
> > likely, I'm still missing something really basic. If I wrap the value in
> > as.numeric() things work fine. Why should I have to do this for mean
> > and median, but not sd? The code below should reproduce this error
> >
> > # Fake data for demo:
> > nsites<-6
> > yearList<-1999:2001
> > fakesub<-as.data.frame(cbind(
> > year =rep(yearList,nsites/length(yearList),each=11)
> > ,site_id =rep(c('site1','site2'),each=11*nsites)
> > ,visit_no =rep(1,11*2*nsites)
> > ,transect =rep(LETTERS[1:11],nsites,each=2)
> > ,transdir =rep(c('LF','RT'),11*nsites)
> > ,undercut =abs(rnorm(11*2*nsites,10))
> > ,angle =runif(11*2*nsites,0,180)
> > ))
> >
> > # Create group summaries:
> > sdmets<-by(fakesub$undercut
> > ,list(fakesub$year,fakesub$site_id,fakesub$visit_no)
> > ,sd
> > )
> > nmets<-by(fakesub$undercut
> > ,list(fakesub$year,fakesub$site_id,fakesub$visit_no)
> > ,length
> > )
> > xmets<-by(fakesub$undercut
> > ,list(fakesub$year,fakesub$site_id,fakesub$visit_no)
> > ,mean
> > )
> > xmets<-by(as.numeric(fakesub$undercut)
> > ,list(fakesub$year,fakesub$site_id,fakesub$visit_no)
> > ,mean
> > )
> >
> > # Put site id values (year, site_id and visit_no) into results:
> > # List unique id combinations as a list of lists. Then
> > # reorganize that into 3 vectors for final results.
> > # Certainly, there MUST be a better way...
> > foo<-strsplit(unique(paste(fakesub$year
> > ,fakesub$site_id
> > ,fakesub$visit_no
> > ,sep='#'))
> > ,split='#'
> > )
> > year<-list()
> > for(i in 1:length(foo)) {year<-rbind(year,foo[[i]][1])}
> > site_id<-list()
> > for(i in 1:length(foo)) {site_id<-rbind(site_id,foo[[i]][2])}
> > visit_no<-list()
> > for(i in 1:length(foo)) {visit_no<-rbind(visit_no,foo[[i]][3])}
> >
> > # Final result, more or less
> > data.frame(cbind(a=year,b=site_id,c=visit_no,sdmets,nmets,xmets))
> >
> >
> > cur
> >
> > --
> > Curt Seeliger, Data Ranger
> > CSC, EPA/WED contractor
> > 541/754-4638
> > seeliger.curt at epa.gov
> >
> > ______________________________________________
> > R-help at stat.math.ethz.ch mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
> >
>
More information about the R-help
mailing list