[R] find parameters for a gamma distribution
Gabor Grothendieck
ggrothendieck at myway.com
Sat Jan 1 19:05:44 CET 2005
<digitalpenis <at> bluebottle.com> writes:
:
: hello,
:
: i have just started exploring R as an alternative to matlab for data
analysis. so far everything is _very_
: promising. i have a question though regarding parameter estimation. i have
some data which, from a
: histogram plot, appears to arise from a gamma distribution. i gather that
you can fit the data to the
: distribution using glm(). i am just not quite sure how this is done in
practice... so here is a simple
: example with artificial data:
:
: d <- rgamma(100000, 20, scale = 2)
: h <- hist(d, breaks = c(seq(10, 80, 2), 100))
:
: H <- data.frame(x = h$mids, y = h$density)
:
: g <- glm(y ~ x, data = H, family = Gamma)
: summary(g)
:
: Call:
: glm(formula = y ~ x, family = Gamma, data = H)
:
: Deviance Residuals:
: Min 1Q Median 3Q Max
: -3.8654 -2.0887 -0.7685 0.7147 1.4508
:
: Coefficients:
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 30.4758 26.7258 1.140 0.262
: x 1.0394 0.6825 1.523 0.137
:
: (Dispersion parameter for Gamma family taken to be 1.343021)
:
: Null deviance: 119.51 on 35 degrees of freedom
: Residual deviance: 116.28 on 34 degrees of freedom
: AIC: -260.49
:
: Number of Fisher Scoring iterations: 7
:
: now i suppose that the estimates parameters are:
:
: shape = 30.4758
: scale = 1.0394
:
: am i interpreting the output correctly? and, if so, why are these estimates
so poor? i would, perhaps
: naively, expected the parameters from an artificial sample like this to be
pretty good.
:
: my apologies if i am doing something stupid here but my statistics
capabilties are rather limited!
library(MASS)
?fitdistr
example(fitdistr) # note the gamma example
More information about the R-help
mailing list