[R] Toying with neural networks
Tom Mulholland
tmulholland at bigpond.com
Tue Feb 8 16:40:33 CET 2005
You are not reading the help.
from the help file
## Default S3 method:
nnet(x, y, weights, size, Wts, mask,
linout = FALSE, entropy = FALSE, softmax = FALSE,
censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)
Look at MaxNWts
Cerviño Beresi Ulises wrote:
> Hello all,
>
> Ive been playing with nnet (package 'nnet') and Ive come across this
> problem. nnet doesnt seems to like to have more than 1000 weights. If I
> do:
>
>
>>data(iris)
>>names(iris)[5] <- "species"
>>net <- nnet(species ~ ., data=iris, size=124, maxit=10)
>
> # weights: 995
> initial value 309.342009
> iter 10 value 21.668435
> final value 21.668435
> stopped after 10 iterations
>
>>table(iris$species[], predict(net, iris[], type="class"))
>
>
> setosa versicolor virginica
> setosa 50 0 0
> versicolor 0 46 4
> virginica 0 0 50
>
> It works just fine, but if I do:
>
>
>>net <- nnet(species ~ ., data=iris, size=125, maxit=10)
>
> Error in nnet.default(x, y, w, softmax = TRUE, ...) :
> Too many (1003) weights
>
> Ive only changed 'size' from 124 to 125 giving me more than 1000
> weights.
>
> Any ideas? Im I doing something wrong?
>
>
>>version
>
> _
> platform i386-pc-linux-gnu
> arch i386
> os linux-gnu
> system i386, linux-gnu
> status
> major 2
> minor 0.1
> year 2004
> month 11
> day 15
> language R
>
More information about the R-help
mailing list