[R] lme X lmer results
Ronaldo Reis-Jr.
chrysopa at gmail.com
Mon Dec 26 12:49:52 CET 2005
Hi,
this is not a new doubt, but is a doubt that I cant find a good response.
Look this output:
> m.lme <- lme(Yvar~Xvar,random=~1|Plot1/Plot2/Plot3)
> anova(m.lme)
numDF denDF F-value p-value
(Intercept) 1 860 210.2457 <.0001
Xvar 1 2 1.2352 0.3821
> summary(m.lme)
Linear mixed-effects model fit by REML
Data: NULL
AIC BIC logLik
5416.59 5445.256 -2702.295
Random effects:
Formula: ~1 | Plot1
(Intercept)
StdDev: 0.000745924
Formula: ~1 | Plot2 %in% Plot1
(Intercept)
StdDev: 0.000158718
Formula: ~1 | Plot3 %in% Plot2 %in% Plot1
(Intercept) Residual
StdDev: 0.000196583 5.216954
Fixed effects: Yvar ~ Xvar
Value Std.Error DF t-value p-value
(Intercept) 2.3545454 0.2487091 860 9.467066 0.0000
XvarFactor2 0.3909091 0.3517278 2 1.111397 0.3821
Number of Observations: 880
Number of Groups:
Plot1 Plot2 %in% Plot1
4 8
Plot3 %in% Plot2 %in% Plot1
20
This is the correct result, de correct denDF for Xvar.
I make this using lmer.
> m.lmer <- lmer(Yvar~Xvar+(1|Plot1)+(1|Plot1:Plot2)+(1|Plot3))
> anova(m.lmer)
Analysis of Variance Table
Df Sum Sq Mean Sq Denom F value Pr(>F)
Xvar 1 33.62 33.62 878.00 1.2352 0.2667
> summary(m.lmer)
Linear mixed-effects model fit by REML
Formula: Yvar ~ Xvar + (1 | Plot1) + (1 | Plot1:Plot2) + (1 | Plot3)
AIC BIC logLik MLdeviance REMLdeviance
5416.59 5445.27 -2702.295 5402.698 5404.59
Random effects:
Groups Name Variance Std.Dev.
Plot3 (Intercept) 1.3608e-08 0.00011665
Plot1:Plot2 (Intercept) 1.3608e-08 0.00011665
Plot1 (Intercept) 1.3608e-08 0.00011665
Residual 2.7217e+01 5.21695390
# of obs: 880, groups: Plot3, 20; Plot1:Plot2, 8; Plot1, 4
Fixed effects:
Estimate Std. Error DF t value Pr(>|t|)
(Intercept) 2.35455 0.24871 878 9.4671 <2e-16 ***
XvarFactor2 0.39091 0.35173 878 1.1114 0.2667
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Look the wrong P value, I know that it is wrong because the DF used. But, In
this case, the result is not correct. Dont have any difference of the result
using random effects with lmer and using a simple analyses with lm.
> m.lm <- lm(Yvar~Xvar)
>
> anova(m.lm)
Analysis of Variance Table
Response: Nadultos
Df Sum Sq Mean Sq F value Pr(>F)
Xvar 1 33.6 33.6 1.2352 0.2667
Residuals 878 23896.2 27.2
>
> summary(m.lm)
Call:
lm(formula = Yvar ~ Xvar)
Residuals:
Min 1Q Median 3Q Max
-2.7455 -2.3545 -1.7455 0.2545 69.6455
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.3545 0.2487 9.467 <2e-16 ***
XvarFactor2 0.3909 0.3517 1.111 0.267
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.217 on 878 degrees of freedom
Multiple R-Squared: 0.001405, Adjusted R-squared: 0.0002675
F-statistic: 1.235 on 1 and 878 DF, p-value: 0.2667
I read the rnews about this use of the full DF in lmer, but I dont undestand
this use with a gaussian error, I undestand this with glm data.
I need more explanations, please.
Thanks
Ronaldo
--
|> // | \\ [***********************************]
| ( õ õ ) [Ronaldo Reis Júnior ]
|> V [UFV/DBA-Entomologia ]
| / \ [36570-000 Viçosa - MG ]
|> /(.''`.)\ [Fone: 31-3899-4007 ]
| /(: :' :)\ [chrysopa at insecta.ufv.br ]
|>/ (`. `'` ) \[ICQ#: 5692561 | LinuxUser#: 205366 ]
| ( `- ) [***********************************]
|>> _/ \_Powered by GNU/Debian Woody/Sarge
More information about the R-help
mailing list