[R] How to pre-filter large amounts of data effectively

Adaikalavan Ramasamy ramasamy at cancer.org.uk
Tue Aug 9 13:10:07 CEST 2005


I do not fully comprehend the codes below. But if I usually want to
check if all the elements in a row/column are the same, then I would
check the variance or range and see if they are nearly zero.

 v.row <- apply( mat, 1, var )
 v.col <- apply( mat, 2, var )

 tol      <- 0
 good.row <- which( v.row > tol )
 good.col <- which( v.col > tol )


Regards, Adai



On Tue, 2005-08-09 at 12:22 +0200, Torsten Schindler wrote:
> Hi,
> 
> I'm a R newbie and want to accelerate the following pre-filtering  
> step of a data set with more than 115,000 rows :
> 
> #-----------------
> # Function to filter out constant data columns
> filter.const<-function(X, vectors=c('column', 'row'), tol=0){
>    realdata=c()
>    filteredX<-matrix()
>    if( vectors[1] == 'row' ){
>      for( row in (1:nrow(X)) ){
>        if( length(which(X[row,]!=median(X[row,])))>tol ){
>          realdata[length(realdata)+1]=row
>        }
>      }
>      filteredX=X[realdata,]
>    } else if( vectors[1] == 'column' ){
>      for( col in (1:ncol(X)) ){
>        if( length(which(X[,col]!=median(X[,col])))>tol ){
>          realdata[length(realdata)+1]=col
>        }
>      }
>      filteredX=X[,realdata]
>    }
>    return(list(x=filteredX, ix=realdata))
> }
> 
> #-----------------
> # Filter out all all-constant columns in my training data set
> #
> # Read training data set with class information in the first column
> training <- read.csv('training_data.txt')
> dim(training) # => 49 rows and 525 columns
> 
> # Prepare column names by stripping the underline and the number at  
> the end
> colnames(training) <- sub('_\\d+$', '', colnames(training), perl=TRUE)
> 
> # Filter out the all-constant columns, exclude column 1, the class  
> column called myclass
> training.filter <- filter.const(training[,-1])
> 
> # The filtered data frame is
> training.filtered <- cbind(myclass=training[,1], training.filter$x)
> dim(training.filtered) # => 49 rows and 250 columns
> 
> # Save the filtered training set for later use in classification
> filtered.data <- 'training_set_filtered.Rdata'
> save(training.filtered, file=filtered.data)
> 
> #-----------------
> # THE FOLLOWING FILTERING STEP TAKES 3 HOUR ON MY PowerBook
> # AND CONSUMES ABOUT 600 Mb MEMORY.
> #
> # I WOULD BE HAPPY ABOUT ANY HINT HOW TO IMPROVE THIS.
> 
> # Pre-filter the big data set (more than 115,000 rows and 524  
> columns) for later class predictions.
> # The big data set contains the same column names as the training  
> set, but in a different order.
> 
> input.file <- 'big_data_set.txt'
> filtered.file <- 'big_data_set_filtered.txt'
> 
> # Read header with first row
> prediction.set <- read.csv(input.file, header=TRUE, skip=0, nrow=1)
> 
> # Prepare column names by stripping the underline and the number at  
> the end
> colnames(prediction.set) <- sub('_\\d+$', '', colnames 
> (prediction.set), perl=TRUE)
> prediction.set.header <- colnames(prediction.set)
> 
> # Get descriptor columns of the training data set without the  
> Activity_Class column
> training.filtered.property.colnames <- colnames(training.filtered)[-1]
> 
> # Filter out the all-constant columns from the training set
> prediction.set.filtered <- prediction.set 
> [training.filtered.property.colnames]
> dim(prediction.set.filtered) # => 1 row and 249 columns
> 
> # Write header and the first filtered row
> write.csv(prediction.set.filtered, file=filtered.file,
>              append=FALSE,  
> col.names=training.filtered.property.colnames)
> 
> blocksize <- 1000
> for (lineid in (0:120)*blocksize) {
>    cat('lineid: ', lineid, '\n')
> 
>    # Read block of data
>    # We have to add an dummy colname "x" in the col.names, when the  
> header is not read!
>    prediction.set <- try(read.csv(input.file, header=FALSE,
>                          col.names=c('x',prediction.set.header),  
> row.names=1,
>                          skip=lineid+2, nrow=blocksize))
>    if (class(prediction.set) == "try-error") break
> 
>    # Filter out all-constant training set columns from the block
>    prediction.set.filtered <- prediction.set 
> [training.filtered.property.colnames]
> 
>    # Append the data
>    # (I know this function is slow, but I couldn't figure out how to  
> do it faster, so far.)
>    write.table(prediction.set.filtered, file=filtered.file,
>                          append=TRUE, col.names=FALSE, sep=",")
> }
> 
> #-------------
> # Now read in the filtered data set and save it for later use in  
> classification
> prediction.set.filtered <- read.csv(filtered.file, header=TRUE,  
> row.names=1)
> filtered.data <- 'prediction_set_filtered.Rdata'
> save(prediction.set.filtered, file=filtered.data)
> 
> 
> 
> I would be very happy about any hints how to improve the code above!!!
> 
> Best regards,
> 
> Torsten
> 
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
>




More information about the R-help mailing list