[R] Help with "non-integer #successes in a binomial glm"
Haibo Huang
edhuang00 at yahoo.com
Mon Aug 8 23:06:48 CEST 2005
Hi,
I had a logit regression, but don't really know how to
handle the "Warning message: non-integer #successes in
a binomial glm! in: eval(expr, envir, enclos)"
problem. I had the same logit regression without
weights and it worked out without the warning, but I
figured it makes more sense to add the weights. The
weights sum up to one.
Could anyone give me some hint? Thanks a lot!
FYI, I have posted both regressions (with and without
weights) below.
Ed
> setwd("P:/Work in Progress/Haibo/Hans")
>
> Lease=read.csv("lease.csv", header=TRUE)
> Lease$ET <- factor(Lease$EarlyTermination)
> SICCode=factor(Lease$SIC.Code)
> Lease$TO=factor(Lease$TenantHasOption)
> Lease$LO=factor(Lease$LandlordHasOption)
> Lease$TEO=factor(Lease$TenantExercisedOption)
>
> RegA=glm(ET~1+TO,
+ family=binomial(link=logit), data=Lease)
> summary(RegA)
Call:
glm(formula = ET ~ 1 + TO, family = binomial(link =
logit), data = Lease)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.5839 -0.5839 -0.5839 -0.3585 2.3565
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.68271 0.02363 -71.20 <2e-16 ***
TO1 -1.02959 0.09012 -11.43 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.'
0.1 ` ' 1
(Dispersion parameter for binomial family taken to be
1)
Null deviance: 12987 on 15809 degrees of freedom
Residual deviance: 12819 on 15808 degrees of freedom
AIC: 12823
Number of Fisher Scoring iterations: 5
> setwd("P:/Work in Progress/Haibo/Hans")
>
> Lease=read.csv("lease.csv", header=TRUE)
> Lease$ET <- factor(Lease$EarlyTermination)
> SICCode=factor(Lease$SIC.Code)
> Lease$TO=factor(Lease$TenantHasOption)
> Lease$LO=factor(Lease$LandlordHasOption)
> Lease$TEO=factor(Lease$TenantExercisedOption)
>
> RegA=glm(ET~1+TO,
+ family=binomial(link=logit), data=Lease,
weights=PortionSF)
Warning message:
non-integer #successes in a binomial glm! in:
eval(expr, envir, enclos)
> summary(RegA)
Call:
glm(formula = ET ~ 1 + TO, family = binomial(link =
logit), data = Lease,
weights = PortionSF)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.055002 -0.003434 0.000000 0.000000 0.120656
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.120 2.618 -0.428 0.669
TO1 -1.570 9.251 -0.170 0.865
(Dispersion parameter for binomial family taken to be
1)
Null deviance: 1.0201 on 9302 degrees of freedom
Residual deviance: 0.9787 on 9301 degrees of freedom
AIC: 4
Number of Fisher Scoring iterations: 5
More information about the R-help
mailing list