[R] Pearson corelation and p-value for matrix

Liaw, Andy andy_liaw at merck.com
Sat Apr 16 04:51:18 CEST 2005


We can be a bit sneaky and `borrow' code from cor.test.default:

cor.pval <- function(x,  alternative="two-sided", ...) {
    corMat <- cor(x, ...)
    n <- nrow(x)
    df <- n - 2
    STATISTIC <- sqrt(df) * corMat / sqrt(1 - corMat^2)
    p <- pt(STATISTIC, df)
    p <- if (alternative == "less") {
        p
    } else if (alternative == "greater") {
        1 - p
    } else 2 * pmin(p, 1 - p)
    p
}

The test:

> system.time(c1 <- cor.pvals(X), gcFirst=TRUE)
[1] 13.19  0.01 13.58    NA    NA
> system.time(c2 <- cor.pvalues(X), gcFirst=TRUE)
[1] 6.22 0.00 6.42   NA   NA
> system.time(c3 <- cor.pval(X), gcFirst=TRUE)
[1] 0.07 0.00 0.07   NA   NA

Cheers,
Andy

> From: John Fox
> 
> Dear Mark,
> 
> I think that the reflex of trying to avoid loops in R is 
> often mistaken, and
> so I decided to try to time the two approaches (on a 3GHz Windows XP
> system).
> 
> I discovered, first, that there is a bug in your function -- 
> you appear to
> have indexed rows instead of columns; fixing that:
> 
> cor.pvals <- function(mat)
> {
>   cols <- expand.grid(1:ncol(mat), 1:ncol(mat))
>   matrix(apply(cols, 1,
>                function(x) cor.test(mat[, x[1]], mat[, 
> x[2]])$p.value),
>          ncol = ncol(mat))
> }
> 
> 
> My function is cor.pvalues and yours cor.pvals. This is for a 
> data matrix
> with 1000 observations on 100 variables:
> 
> > R <- diag(100)
> > R[upper.tri(R)] <- R[lower.tri(R)] <- .5
> > library(mvtnorm)
> > X <- rmvnorm(1000, sigma=R)
> > dim(X)
> [1] 1000  100
> > 
> > system.time(cor.pvalues(X))
> [1] 5.53 0.00 5.53   NA   NA
> > 
> > system.time(cor.pvals(X))
> [1] 12.66  0.00 12.66    NA    NA
> > 
> 
> I frankly didn't expect the advantage of my approach to be 
> this large, but
> there it is.
> 
> Regards,
>  John
> 
> --------------------------------
> John Fox
> Department of Sociology
> McMaster University
> Hamilton, Ontario
> Canada L8S 4M4
> 905-525-9140x23604
> http://socserv.mcmaster.ca/jfox 
> -------------------------------- 
> 
> > -----Original Message-----
> > From: Marc Schwartz [mailto:MSchwartz at MedAnalytics.com] 
> > Sent: Friday, April 15, 2005 7:08 PM
> > To: John Fox
> > Cc: 'Dren Scott'; R-Help
> > Subject: RE: [R] Pearson corelation and p-value for matrix
> > 
> > Here is what might be a slightly more efficient way to get to John's
> > question:
> > 
> > cor.pvals <- function(mat)
> > {
> >   rows <- expand.grid(1:nrow(mat), 1:nrow(mat))
> >   matrix(apply(rows, 1,
> >                function(x) cor.test(mat[x[1], ], mat[x[2], 
> > ])$p.value),
> >          ncol = nrow(mat))
> > }
> > 
> > HTH,
> > 
> > Marc Schwartz
> > 
> > On Fri, 2005-04-15 at 18:26 -0400, John Fox wrote:
> > > Dear Dren,
> > > 
> > > How about the following?
> > > 
> > >  cor.pvalues <- function(X){
> > >     nc <- ncol(X)
> > >     res <- matrix(0, nc, nc)
> > >     for (i in 2:nc){
> > >         for (j in 1:(i - 1)){
> > >             res[i, j] <- res[j, i] <- cor.test(X[,i], 
> X[,j])$p.value
> > >             }
> > >         }
> > >     res
> > >     }
> > > 
> > > What one then does with all of those non-independent test 
> > is another 
> > > question, I guess.
> > > 
> > > I hope this helps,
> > >  John
> > 
> > > > -----Original Message-----
> > > > From: r-help-bounces at stat.math.ethz.ch 
> > > > [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of 
> Dren Scott
> > > > Sent: Friday, April 15, 2005 4:33 PM
> > > > To: r-help at stat.math.ethz.ch
> > > > Subject: [R] Pearson corelation and p-value for matrix
> > > > 
> > > > Hi,
> > > >  
> > > > I was trying to evaluate the pearson correlation and 
> the p-values 
> > > > for an nxm matrix, where each row represents a vector. 
> > One way to do 
> > > > it would be to iterate through each row, and find its 
> correlation 
> > > > value( and the p-value) with respect to the other rows. 
> Is there 
> > > > some function by which I can use the matrix as input? 
> > Ideally, the 
> > > > output would be an nxn matrix, containing the p-values 
> > between the 
> > > > respective vectors.
> > > >  
> > > > I have tried cor.test for the iterations, but couldn't find a 
> > > > function that would take the matrix as input.
> > > >  
> > > > Thanks for the help.
> > > >  
> > > > Dren
> > 
> >
> 
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! 
> http://www.R-project.org/posting-guide.html
> 
> 
>




More information about the R-help mailing list