[R] aggregation question
Liaw, Andy
andy_liaw at merck.com
Fri Apr 15 21:42:00 CEST 2005
If I understood you correctly, here's one way:
> sumWO2 <- sapply(split(dat, dat$id), function(d) sum(d$meas[d$date != 2]))
> sumWO2
a b c
0.9439614 0.4481582 1.6967618
Andy
> From: Christoph Lehmann
>
> Dear Sundar, dear Andy
> manyt thanks for the length(unique(x)) hint. It solves of course my
> problem in a very elegant way. Just of curiosity (or for
> potential future
> problems): how could I solve it in a way, conceptually
> different, namely,
> that the computation on 'meas' being dependent on the
> variable 'date'?,
> means the computation on a variable x in the function passed
> to aggregate
> is conditional on the value of another variable y? I hope you
> understand
> what I mean, let's think of an example:
>
> E.g for the example data.frame below, the sum shall be taken over the
> variable meas only for all entries with a corresponding 'data' != 2
>
> for this do I have to nest two aggregate statements, or is
> there a way
> using sapply or similar apply-based commands?
>
> thanks a lot for your kind help.
>
> Cheers!
>
> Christoph
>
> aggregate(data$meas, list(id = data$id), sum)
> >
> >
> > Christoph Lehmann wrote on 4/15/2005 9:51 AM:
> > > Hi I have a question concerning aggregation
> > >
> > > (simple demo code S. below)
> > >
> > > I have the data.frame
> > >
> > > id meas date
> > > 1 a 0.637513747 1
> > > 2 a 0.187710063 2
> > > 3 a 0.247098459 2
> > > 4 a 0.306447690 3
> > > 5 b 0.407573577 2
> > > 6 b 0.783255085 2
> > > 7 b 0.344265082 3
> > > 8 b 0.103893068 3
> > > 9 c 0.738649586 1
> > > 10 c 0.614154037 2
> > > 11 c 0.949924371 3
> > > 12 c 0.008187858 4
> > >
> > > When I want for each id the sum of its meas I do:
> > >
> > > aggregate(data$meas, list(id = data$id), sum)
> > >
> > > If I want to know the number of meas(ures) for each id I do, eg
> > >
> > > aggregate(data$meas, list(id = data$id), length)
> > >
> > > NOW: Is there a way to compute the number of meas(ures)
> for each id
> with
> > > not identical date (e.g using diff()?
> > > so that I get eg:
> > >
> > > id x
> > > 1 a 3
> > > 2 b 2
> > > 3 c 4
> > >
> > >
> > > I am sure it must be possible
> > >
> > > thanks for any (even short) hint
> > >
> > > cheers
> > > Christoph
> > >
> > >
> > >
> > > --------------
> > > data <- data.frame(c(rep("a", 4), rep("b", 4), rep("c", 4)),
> > > runif(12), c(1, 2, 2, 3, 2, 2, 3, 3,
> 1, 2, 3, 4))
> > > names(data) <- c("id", "meas", "date")
> > >
> > > m <- aggregate(data$meas, list(id = data$id), sum)
> > > names(m) <- c("id", "cum.meas")
> > >
> >
> >
> > How about:
> >
> > m <- aggregate(data["date"], data["id"],
> > function(x) length(unique(x)))
> >
> > --sundar
> >
>
> --
> +++ GMX - Die erste Adresse für Mail, Message, More +++
>
> 1 GB Mailbox bereits in GMX FreeMail http://www.gmx.net/de/go/mail
>
>
>
More information about the R-help
mailing list