[R] polr (MASS) and lrm (Design) differences in tests of statistical signifcance
Paul Johnson
pauljohn at ku.edu
Thu Sep 30 23:40:56 CEST 2004
Greetings:
I'm running R-1.9.1 on Fedora Core 2 Linux.
I tested a proportional odds logistic regression with MASS's polr and
Design's lrm. Parameter estimates between the 2 are consistent, but the
standard errors are quite different, and the conclusions from the t and
Wald tests are dramatically different. I cranked the "abstol" argument
up quite a bit in the polr method and it did not make the differences go
away.
So
1. Can you help me see why the std. errors in the polr are so much
smaller, and
2. Can I hear more opinions on the question of t vs. Wald in making
these signif tests. So far, I understand the t is based on the
asymptotic Normality of the estimate of b, and for finite samples b/se
is not exactly distributed as a t. But I also had the impression that
the Wald value was an approximation as well.
> summary(polr(as.factor(RENUCYC) ~ DOCS + PCT65PLS*RANNEY2 + OLDCRASH
+ FISCAL2 + PCTMETRO + ADMLICEN, data=elaine1))
Re-fitting to get Hessian
Call:
polr(formula = as.factor(RENUCYC) ~ DOCS + PCT65PLS * RANNEY2 +
OLDCRASH + FISCAL2 + PCTMETRO + ADMLICEN, data = elaine1)
Coefficients:
Value Std. Error t value
DOCS 0.004942217 0.002952001 1.674192
PCT65PLS 0.454638558 0.113504288 4.005475
RANNEY2 0.110473483 0.010829826 10.200855
OLDCRASH 0.139808663 0.042245692 3.309418
FISCAL2 0.025592117 0.011465812 2.232037
PCTMETRO 0.018184093 0.007792680 2.333484
ADMLICEN -0.028490387 0.011470999 -2.483688
PCT65PLS:RANNEY2 -0.008559228 0.001456543 -5.876400
Intercepts:
Value Std. Error t value
2|3 6.6177 0.3019 21.9216
3|4 7.1524 0.2773 25.7938
4|5 10.5856 0.2149 49.2691
5|6 12.2132 0.1858 65.7424
6|8 12.2704 0.1856 66.1063
8|10 13.0345 0.2184 59.6707
10|12 13.9801 0.3517 39.7519
12|18 14.6806 0.5587 26.2782
Residual Deviance: 587.0995
AIC: 619.0995
> lrm(RENUCYC ~ DOCS + PCT65PLS*RANNEY2 + OLDCRASH + FISCAL2 +
PCTMETRO + ADMLICEN, data=elaine1)
Logistic Regression Model
lrm(formula = RENUCYC ~ DOCS + PCT65PLS * RANNEY2 + OLDCRASH +
FISCAL2 + PCTMETRO + ADMLICEN, data = elaine1)
Frequencies of Responses
2 3 4 5 6 8 10 12 18
21 12 149 46 1 10 6 2 2
Frequencies of Missing Values Due to Each Variable
RENUCYC DOCS PCT65PLS RANNEY2 OLDCRASH FISCAL2 PCTMETRO ADMLICEN
5 0 0 6 0 5 0 5
Obs Max Deriv Model L.R. d.f. P C
Dxy
249 7e-05 56.58 8 0 0.733
0.465
Gamma Tau-a R2 Brier
0.47 0.278 0.22 0.073
Coef S.E. Wald Z P
y>=3 -6.617857 6.716688 -0.99 0.3245
y>=4 -7.152561 6.716571 -1.06 0.2869
y>=5 -10.585705 6.742222 -1.57 0.1164
y>=6 -12.213340 6.755656 -1.81 0.0706
y>=8 -12.270506 6.755571 -1.82 0.0693
y>=10 -13.034584 6.756829 -1.93 0.0537
y>=12 -13.980235 6.767724 -2.07 0.0389
y>=18 -14.680760 6.786639 -2.16 0.0305
DOCS 0.004942 0.002932 1.69 0.0918
PCT65PLS 0.454653 0.552430 0.82 0.4105
RANNEY2 0.110475 0.076438 1.45 0.1484
OLDCRASH 0.139805 0.042104 3.32 0.0009
FISCAL2 0.025592 0.011374 2.25 0.0245
PCTMETRO 0.018184 0.007823 2.32 0.0201
ADMLICEN -0.028490 0.011576 -2.46 0.0138
PCT65PLS * RANNEY2 -0.008559 0.006417 -1.33 0.1822
>
--
Paul E. Johnson email: pauljohn at ku.edu
Dept. of Political Science http://lark.cc.ku.edu/~pauljohn
1541 Lilac Lane, Rm 504
University of Kansas Office: (785) 864-9086
Lawrence, Kansas 66044-3177 FAX: (785) 864-5700
More information about the R-help
mailing list