[R] not understanding geoR "nugget" output
Paulo Justiniano Ribeiro Jr
paulojus at est.ufpr.br
Wed Sep 29 03:32:42 CEST 2004
Melaine
When estimated phi=0 or sigmasq=0 the odel is a "pure nugget effect" and
you cannot distinguish between sigmasq and tausq
Therefore it is a convention in geoR to assign the estimated varioance to
tausq.
Regarding R^2:
forgaussian models you can compute this values using the maximised
likelihood and othe model information
Alternatively you can use likfit with the argument components=T.
This will return the estimated model components frwom which you can
compute R^2.
Since this is a package specific question feel free to contact me directly
if you have any further queries
best
P.J.
On Tue, 28 Sep 2004, Melanie A. Link-Perez wrote:
> I am having difficulty understanding the output from a likfit call,
> specifically the output for the nugget. When the partial sill is non-zero,
> the estimated nugget that is returned is zero. When the partial sill is zero,
> I get a non-zero nugget. The following output may be helpful:
>
> Estimation method: maximum likelihood
>
> Parameters of the mean component (trend):
> beta0 beta1 beta2 beta3 beta4 beta5
> 2.4299 2.5095 4.8184 -0.0084 -0.0625 -0.0057
>
> Parameters of the spatial component:
> correlation function: spherical
> (estimated) variance parameter sigmasq (partial sill) = 1694
> (estimated) cor. fct. parameter phi (range parameter) = 32.1
> anisotropy parameters:
> (fixed) anisotropy angle = 0 ( 0 degrees )
> (fixed) anisotropy ratio = 1
>
> Parameter of the error component:
> (estimated) nugget = 0
>
> Transformation parameter:
> (fixed) Box-Cox parameter = 1 (no transformation)
>
> Maximised Likelihood:
> log.L n.params AIC BIC
> "-98.92" "9" "215.8" "224.8"
>
> non spatial model:
> log.L n.params AIC BIC
> "-101.5" "8" "219.0" "226.9"
>
> Call:
> likfit(geodata = geodataK, trend = "2nd", ini.cov.pars = c(1700,
> 50), cov.model = "sph", method.lik = "ML")
>
>
> ---
> This is the code I used:
>
> geodataK <- as.geodata(data[,c(2,3,11)], coords.col=1:2, data.col=3)
> geodataK
> bin4 <- variog(geodataK, uvec=seq(0,163.44,l=21), max.dist=50,
> estimator.type="modulus", trend="2nd"); plot(bin4, main = "(f) Potassium",
> xlab = "", ylab = "")
> mod1 <- likfit(cov.model="sph",geodataK, trend="2nd",ini=c(1700,50),
> method="ML");summary(mod1)
> lines(mod1, lty=1)
>
> ---
>
> I am also trying to figure out how to calculate R^2 values for the likfit
> models that I fit to the semivariogram.
>
> I am using R version 1.9.1 (rw1091) and geoR version 1.4-8 on a PC running MS
> Windows XP Professional version 2002.
>
>
> Many thanks,
> Melanie Link-Perez
> Miami University
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
>
>
Paulo Justiniano Ribeiro Jr
Departamento de EstatÃstica
Universidade Federal do Paraná
Caixa Postal 19.081
CEP 81.531-990
Curitiba, PR - Brasil
Tel: (+55) 41 361 3573
Fax: (+55) 41 361 3141
e-mail: paulojus at est.ufpr.br
http://www.est.ufpr.br/~paulojus
/"\
\ / Campanha da fita ASCII - contra mail html
X ASCII ribbon campaign - against html mail
/ \
More information about the R-help
mailing list