[R] Issue with predict() for glm models

John Fox jfox at mcmaster.ca
Thu Sep 23 14:49:23 CEST 2004


Dear Uwe,

Unless I've somehow messed this up, as I mentioned yesterday, what you
suggest doesn't seem to work when the predictor is a matrix. Here's a
simplified example:

> X <- matrix(rnorm(200), 100, 2)
> y <- (X %*% c(1,2) + rnorm(100)) > 0
> dat <- data.frame(y=y, X=X)
> mod <- glm(y ~ X, family=binomial, data=dat)
> new <- data.frame(X = matrix(rnorm(20),2))
> predict(mod, new)
           1            2            3            4            5
6 
  1.81224443  -5.92955128   1.98718051 -10.05331521   2.65065555
-2.50635812 
           7            8            9           10           11
12 
  5.63728698  -0.94845276  -3.61657377  -1.63141320   5.03417372
1.80400271 
          13           14           15           16           17
18 
  9.32876273  -5.32723406   5.29373023  -3.90822713 -10.95065186
4.90038016 

 . . .

           97           98           99          100 
 -6.92509812   0.59357486  -1.17205723   0.04209578 


Note that there are 100 rather than 10 predicted values.

But with individuals predictors (rather than a matrix),

> x1 <- X[,1]
> x2 <- X[,2]
> dat.2 <- data.frame(y=y, x1=x1, x2=x2)
> mod.2 <- glm(y ~ x1 + x2, family=binomial, data=dat.2)
> new.2 <- data.frame(x1=rnorm(10), x2=rnorm(10))
> predict(mod.2, new.2)
         1          2          3          4          5          6          7

 6.5723823  0.6356392  4.0291018 -4.7914650  2.1435485 -3.1738096 -2.8261585

         8          9         10 
-1.5255329 -4.7087592  4.0619290 

works as expected (?).

Regards,
 John
 

> -----Original Message-----
> From: r-help-bounces at stat.math.ethz.ch 
> [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of Uwe Ligges
> Sent: Thursday, September 23, 2004 1:33 AM
> To: jrausch at nd.edu
> Cc: r-help at stat.math.ethz.ch
> Subject: Re: [R] Issue with predict() for glm models
> 
> jrausch at nd.edu wrote:
> 
> > Hello everyone,
> > 
> > I am having a problem using the predict (or the 
> predict.glm) function in R.
> > Basically, I run the glm model on a "training" data set and try to 
> > obtain predictions for a set of new predictors from a 
> "test" data set 
> > (i.e., not the predictors that were utilized to obtain the 
> glm parameter estimates).
> > Unfortunately, every time that I attempt this, I obtain the 
> > predictions for the predictors that were used to fit the 
> glm model. I 
> > have looked at the R mailing list archives and don't believe I am 
> > making the same mistakes that have been made in the past 
> and also have 
> > tried to closely follow the predict.glm example in the help 
> file. Here is an example of what I am trying to do:
> > 
> > ########################################################
> > set.seed(545345)
> > 
> > ################
> > # Necessary Variables #
> > ################
> > 
> > p <- 2
> > train.n <- 20
> > test.n <- 25
> > mean.vec.1 <- c(1,1)
> > mean.vec.2 <- c(0,0)
> > 
> > Sigma.1 <- matrix(c(1,.5,.5,1),p,p)
> > Sigma.2 <- matrix(c(1,.5,.5,1),p,p)
> > 
> > ###############
> > # Load MASS Library #
> > ###############
> > 
> > library(MASS)
> > 
> > ###################################
> > # Data to Parameters for Logistic Regression Model # 
> > ###################################
> > 
> > train.data.1 <- mvrnorm(train.n,mu=mean.vec.1,Sigma=Sigma.1)
> > train.data.2 <- mvrnorm(train.n,mu=mean.vec.2,Sigma=Sigma.2)
> > train.class.var <- as.factor(c(rep(1,train.n),rep(2,train.n)))
> > predictors.train <- rbind(train.data.1,train.data.2)
> > 
> > ##############################################
> > # Test Data Where Predictions for Probabilities Using 
> Logistic Reg.  #
> > # From Training Data are of Interest                        
>                   #
> > ##############################################
> > 
> > test.data.1 <- mvrnorm(test.n,mu=mean.vec.1,Sigma=Sigma.1)
> > test.data.2 <- mvrnorm(test.n,mu=mean.vec.2,Sigma=Sigma.2)
> > predictors.test <- rbind(test.data.1,test.data.2)
> > 
> > ##############################
> > # Run Logistic Regression on Training Data # 
> > ##############################
> > 
> > log.reg <- glm(train.class.var~predictors.train,
> > family=binomial(link="logit"))
> 
> Well, you haven't specified the "data" argument, but given 
> the two variables directly. Exactly those variables will be 
> used in the
> predict() step below! If you want the predict() step to work, 
> use something like:
> 
>    train <- data.frame(class = train.class.var,
>                        predictors = predictors.train)
>    log.reg <- glm(class ~ ., data = train,
>                   family=binomial(link="logit"))
> 
> 
> 
> > log.reg
> > 
> > #> log.reg
> > 
> > #Call:  glm(formula = train.class.var ~ predictors.train, family = 
> > #binomial(link = "logit")) #
> > #Coefficients:
> > #      (Intercept)  predictors.train1  predictors.train2  
> > #           0.5105            -0.2945            -1.0811  
> > #
> > #Degrees of Freedom: 39 Total (i.e. Null);  37 Residual
> > #Null Deviance:      55.45 
> > #Residual Deviance: 41.67        AIC: 47.67 
> > 
> > ###########################
> > # Predicted Probabilities for Test Data # 
> ###########################
> > 
> > New.Data <- data.frame(predictors.train1=predictors.test[,1],
> > predictors.train2=predictors.test[,2])
> > 
> > logreg.pred.prob.test <- 
> predict.glm(log.reg,New.Data,type="response")
> > logreg.pred.prob.test
> 
> Instead, use:
> 
>    test <- data.frame(predictors = predictors.test)
>    predict(log.reg, newdata = test, type="response")
> 
> 
> note also: please call the generic predict() rather than its 
> glm method.
> 
> 
> Uwe Ligges
> 
> 
> > #logreg.pred.prob.test
> > # [1] 0.51106406 0.15597423 0.04948404 0.03863875 0.35587589 
> > 0.71331091 # [7] 0.17320087 0.14176632 0.30966718 0.61878952 
> > 0.12525988 0.21271139 #[13] 0.70068113 0.18340723 0.10295501 
> > 0.44591568 0.72285161 0.31499339 #[19] 0.65789420 0.42750139 
> > 0.14435889 0.93008117 0.70798465 0.80109005 #[25] 0.89161472 
> > 0.47480625 0.56520952 0.63981834 0.57595189 0.60075882 #[31] 
> > 0.96493393 0.77015507 0.87643986 0.62973986 0.63043351 0.45398955 
> > #[37] 0.80855782 0.90835588 0.54809117 0.11568637 
> > ########################################################
> > 
> > Of course, notice that the vector for the predicted 
> probabilities has 
> > only 40 elements, while the "New.Data" has 50 elements 
> (since n.test 
> > has 25 per group for 2 groups) and thus should have 50 predicted 
> > probabilities. As it turns out, the output is for the training data 
> > predictors and not for the "New.Data" as I would like it to be. I 
> > should also note that I have made sure that the names for the 
> > predictors in the "New.Data" are the same as the names for the 
> > predictors within the glm object (i.e., within "log.reg") 
> as this is what is done in the example for predict.glm() 
> within the help files.
> > 
> > Could some one help me understand either what I am doing 
> incorrectly 
> > or what problems there might be within the predict() function? I 
> > should mention that I tried the same program using 
> predict.glm() and 
> > obtained the same problematic results.
> > 
> > Thanks and take care,
> > 
> > Joe
> > 
> > 
> > Joe Rausch, M.A. 
> > Psychology Liaison
> > Lab for Social Research
> > 917 Flanner Hall
> > University of Notre Dame
> > Notre Dame, IN 46556
> > (574) 631-3910
> > 
> > "If we knew what it was we were doing, it would not be called 
> > research, would it?"
> > - Albert Einstein
> > 
> > ______________________________________________
> > R-help at stat.math.ethz.ch mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide! 
> > http://www.R-project.org/posting-guide.html
> 
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! 
> http://www.R-project.org/posting-guide.html




More information about the R-help mailing list