[R] polr (MASS) and lrm (Design) differences in tests of statistical signifcance

John Fox jfox at mcmaster.ca
Fri Oct 1 02:34:53 CEST 2004


Dear Paul,

I tried polr() and lrm() on a different problem and (except for the
difference in signs for the cut-points/intercepts) got identical results for
both coefficients and standard errors. There might be something
ill-conditioned about your problem that produces the discrepancy -- I
noticed, for example, that some of the upper categories of the response are
very sparse. Perhaps the two functions use different forms of the
information matrix. I expect that someone else will be able to supply more
details.

I believe that the t-statistics in the polr() output are actually Wald
statistics.

I hope this helps,
 John



> -----Original Message-----
> From: r-help-bounces at stat.math.ethz.ch 
> [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of Paul Johnson
> Sent: Thursday, September 30, 2004 4:41 PM
> To: r help
> Subject: [R] polr (MASS) and lrm (Design) differences in 
> tests of statistical signifcance 
> 
> Greetings:
> 
> I'm running R-1.9.1 on Fedora Core 2 Linux.
> 
> I tested a proportional odds logistic regression with MASS's 
> polr and Design's lrm.  Parameter estimates between the 2 are 
> consistent, but the standard errors are quite different, and 
> the conclusions from the t and Wald tests are dramatically 
> different. I cranked the "abstol" argument up quite a bit in 
> the polr method and it did not make the differences go away.
> 
> So
> 
> 1. Can you help me see why the std. errors in the polr are so 
> much smaller, and
> 
> 2. Can I hear more opinions on the question of t vs. Wald in 
> making these signif tests. So far, I understand the t is 
> based on the asymptotic Normality of the estimate of b, and 
> for finite samples b/se is not exactly distributed as a t. 
> But I also had the impression that the Wald value was an 
> approximation as well.
> 
>  > summary(polr(as.factor(RENUCYC) ~ DOCS + PCT65PLS*RANNEY2 
> + OLDCRASH 
> +  FISCAL2 + PCTMETRO + ADMLICEN, data=elaine1))
> 
> Re-fitting to get Hessian
> 
> Call:
> polr(formula = as.factor(RENUCYC) ~ DOCS + PCT65PLS * RANNEY2 +
>      OLDCRASH + FISCAL2 + PCTMETRO + ADMLICEN, data = elaine1)
> 
> Coefficients:
>                          Value  Std. Error   t value
> DOCS              0.004942217 0.002952001  1.674192
> PCT65PLS          0.454638558 0.113504288  4.005475
> RANNEY2           0.110473483 0.010829826 10.200855
> OLDCRASH          0.139808663 0.042245692  3.309418
> FISCAL2           0.025592117 0.011465812  2.232037
> PCTMETRO          0.018184093 0.007792680  2.333484
> ADMLICEN         -0.028490387 0.011470999 -2.483688
> PCT65PLS:RANNEY2 -0.008559228 0.001456543 -5.876400
> 
> Intercepts:
>        Value   Std. Error t value
> 2|3    6.6177  0.3019    21.9216
> 3|4    7.1524  0.2773    25.7938
> 4|5   10.5856  0.2149    49.2691
> 5|6   12.2132  0.1858    65.7424
> 6|8   12.2704  0.1856    66.1063
> 8|10  13.0345  0.2184    59.6707
> 10|12 13.9801  0.3517    39.7519
> 12|18 14.6806  0.5587    26.2782
> 
> Residual Deviance: 587.0995
> AIC: 619.0995
> 
> 
>  > lrm(RENUCYC ~ DOCS + PCT65PLS*RANNEY2 + OLDCRASH +  
> FISCAL2 + PCTMETRO + ADMLICEN, data=elaine1)
> 
> Logistic Regression Model
> 
> lrm(formula = RENUCYC ~ DOCS + PCT65PLS * RANNEY2 + OLDCRASH +
>      FISCAL2 + PCTMETRO + ADMLICEN, data = elaine1)
> 
> 
> Frequencies of Responses
>    2   3   4   5   6   8  10  12  18
>   21  12 149  46   1  10   6   2   2
> 
> Frequencies of Missing Values Due to Each Variable
>   RENUCYC     DOCS PCT65PLS  RANNEY2 OLDCRASH  FISCAL2 
> PCTMETRO ADMLICEN
>         5        0        0        6        0        5        
> 0        5
> 
>         Obs  Max Deriv Model L.R.       d.f.          P          C 
>    Dxy
>         249      7e-05      56.58          8          0      0.733 
> 0.465
>       Gamma      Tau-a         R2      Brier
>        0.47      0.278       0.22      0.073
> 
>                     Coef       S.E.     Wald Z P
> y>=3                -6.617857 6.716688 -0.99  0.3245
> y>=4                -7.152561 6.716571 -1.06  0.2869
> y>=5               -10.585705 6.742222 -1.57  0.1164
> y>=6               -12.213340 6.755656 -1.81  0.0706
> y>=8               -12.270506 6.755571 -1.82  0.0693
> y>=10              -13.034584 6.756829 -1.93  0.0537
> y>=12              -13.980235 6.767724 -2.07  0.0389
> y>=18              -14.680760 6.786639 -2.16  0.0305
> DOCS                 0.004942 0.002932  1.69  0.0918
> PCT65PLS             0.454653 0.552430  0.82  0.4105
> RANNEY2              0.110475 0.076438  1.45  0.1484
> OLDCRASH             0.139805 0.042104  3.32  0.0009
> FISCAL2              0.025592 0.011374  2.25  0.0245
> PCTMETRO             0.018184 0.007823  2.32  0.0201
> ADMLICEN            -0.028490 0.011576 -2.46  0.0138
> PCT65PLS * RANNEY2  -0.008559 0.006417 -1.33  0.1822
> 
>  >
> 
> -- 
> Paul E. Johnson                       email: pauljohn at ku.edu
> Dept. of Political Science            http://lark.cc.ku.edu/~pauljohn
> 1541 Lilac Lane, Rm 504
> University of Kansas                  Office: (785) 864-9086
> Lawrence, Kansas 66044-3177           FAX: (785) 864-5700
> 
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! 
> http://www.R-project.org/posting-guide.html




More information about the R-help mailing list