[R] classification with nnet: handling unequal class sizes
Christoph Lehmann
christoph.lehmann at gmx.ch
Tue Mar 30 09:50:37 CEST 2004
I hope this question is adequate for this list
I use the nnet code from V&R p. 348: The very nice and general function
CVnn2() to choose the number of hidden units and the amount of weight
decay by an inner cross-validation- with a slight modification to use it
for classification (see below).
My data has 2 classes with unequal size: 45 observations for classI and
116 obs. for classII
With CVnn2 I get the following confusion matrix (%) (average of 10
runs):
predicted
true 53 47
16 84
I had a similar biased confusion matrix with randomForest until I used
the sampsize argument (the same holds for svm until I used the
class.weights argument).
How can I handle this problem of unequal class sizes with nnet, in order
to get a less biased confusion matrix?
(with randomForest I finally got
78 22
16 84
)
many thanks for a hint
Christoph
----------------------------------------------------------------------------
#--- neural networks
#classification network is constructed; this has one output and entropy
fit if the number of levels is two, and a number of outputs equal to the
number of classes and a softmax output stage for more levels. ->
therefore two lines of Prof. Ripley's wrapper function are changed below
(original commented out) and an additional function has been introduced
(resmatrix)
con <- function(...)
{
print(tab <- table(...))
diag(tab) <- 0
cat("error rate = ",
round(100*sum(tab)/length(list(...)[[1]]), 2), "%\n")
invisible()
}
CVnn2 <- function(formula, data,
size = c(0,4,4,10,10), lambda = c(0, rep(c(0.001,
0.01),2)),
nreps = 1, nifold = 5, verbose = 99, ...)
{
resmatrix <- function(predict.matrix,learn, data, ri, i)
{
rae.matrix <- predict.matrix
rae.matrix[,] <- 0
rae.vector <- as.numeric(as.factor((predict(learn, data[ri ==
i,], type = "class"))))
for (k in 1:dim(rae.matrix)[1]) {
if (rae.vector[k] == 1) rae.matrix[k,1] <- rae.matrix[k,1] + 1
else
rae.matrix[k,2] <- rae.matrix[k,2] + 1
}
rae.matrix
}
CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...)
{
totalerror <- 0
truth <- data[,deparse(formula[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
if(verbose > 20) cat(" inner fold")
for (i in sort(unique(ri))) {
if(verbose > 20) cat(" ", i, sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,], trace = F, ...)
#res[ri == i,] <- res[ri == i,] + predict(learn, data[ri
== i,])
res[ri == i,] <- res[ri == i,] + resmatrix(res[ri ==
i,],learn,data, ri, i)
}
}
if(verbose > 20) cat("\n")
sum(as.numeric(truth) != max.col(res/nreps))
}
truth <- data[,deparse(formula[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
choice <- numeric(length(lambda))
for (i in sort(unique(rand))) {
if(verbose > 0) cat("fold ", i,"\n", sep="")
ri <- sample(nifold, sum(rand!=i), replace=T)
for(j in seq(along=lambda)) {
if(verbose > 10)
cat(" size =", size[j], "decay =", lambda[j], "\n")
choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps,
ri=ri, size=size[j], decay=lambda[j],
verbose=verbose, ...)
}
decay <- lambda[which.is.max(-choice)]
csize <- size[which.is.max(-choice)]
if(verbose > 5) cat(" #errors:", choice, " ") #
if(verbose > 1) cat("chosen size = ", csize,
" decay = ", decay, "\n", sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[rand != i,], trace=F,
size=csize, decay=decay, ...)
#res[rand == i,] <- res[rand == i,] + predict(learn,
data[rand == i,])
res[rand == i,] <- res[rand == i,] + resmatrix(res[rand ==
i,],learn,data, rand, i)
}
}
factor(levels(truth)[max.col(res/nreps)], levels = levels(truth))
}
--
Christoph Lehmann <christoph.lehmann at gmx.ch>
More information about the R-help
mailing list