[R] Quirks with system.time and simulations

Liaw, Andy andy_liaw at merck.com
Mon Jun 14 03:24:28 CEST 2004


I wonder if there's also effect of cpu cache...

Andy

> From: Roger D. Peng
> 
> I think the first time is potentially much slower because of a 
> garbage collection.  R-devel has a flag `gcFirst' for 
> system.time() which (I think) forces a garbage collection before 
> timing.
> 
> -roger
> 
> Patrick Connolly wrote:
> > I tried the code that Richard O'Keefe posted last week, to wit:
> > 
> > library(chron)
> >     ymd.to.POSIXlt <-
> >         function (y, m, d) as.POSIXlt(chron(julian(y=y, x=m, d=d)))
> >     n <- 100000
> >     y <- sample(1970:2004, n, replace=TRUE)
> >     m <- sample(1:12,      n, replace=TRUE)
> >     d <- sample(1:28,      n, replace=TRUE)
> >     system.time(ymd.to.POSIXlt(y, m, d))
> >     [1]  8.78  0.10 31.76  0.00  0.00
> >     system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> >     [1] 14.64  0.13 53.30  0.00  0.00
> > 
> > 
> > On a somewhat newer machine, I got
> > 
> > $ R --vanilla
> > 
> > R : Copyright 2004, The R Foundation for Statistical Computing
> > Version 1.9.0  (2004-04-12), ISBN 3-900051-00-3
> > 
> > [...]
> > 
> > 
> > 
> >>library(chron)
> >>    ymd.to.POSIXlt <-
> > 
> > +         function (y, m, d) as.POSIXlt(chron(julian(y=y, 
> x=m, d=d)))
> > 
> >>    n <- 100000
> >>    y <- sample(1970:2004, n, replace=TRUE)
> >>    m <- sample(1:12,      n, replace=TRUE)
> >>    d <- sample(1:28,      n, replace=TRUE)
> >>
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 1.67 0.24 2.01 0.00 0.00
> > 
> >>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> > 
> > [1] 3.06 0.02 3.08 0.00 0.00
> > 
> > 
> > But then I tried a few more times...
> > 
> > 
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 1.09 0.04 1.13 0.00 0.00
> > 
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 1.11 0.09 1.20 0.00 0.00
> > 
> > 
> > The second time is a lot faster, but subsequent ones don't 
> "improve further".
> > '
> > But with the "standard" function,
> > 
> > 
> >>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> > 
> > [1] 2.64 0.02 2.66 0.00 0.00
> > 
> >>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> > 
> > [1] 2.82 0.03 2.85 0.00 0.00
> > 
> > ... it does improve slightly but rather a lot less.
> > 
> > 
> > THEN
> > 
> > If I compare the two methods in the reverse order,
> > 
> > 
> > $ R --vanilla
> > 
> > R : Copyright 2004, The R Foundation for Statistical Computing
> > Version 1.9.0  (2004-04-12), ISBN 3-900051-00-3
> > 
> > [....]
> > 
> > 
> > 
> >>library(chron)
> >>    ymd.to.POSIXlt <-
> > 
> > +         function (y, m, d) as.POSIXlt(chron(julian(y=y, 
> x=m, d=d)))
> > 
> >>    n <- 100000
> >>    y <- sample(1970:2004, n, replace=TRUE)
> >>    m <- sample(1:12,      n, replace=TRUE)
> >>    d <- sample(1:28,      n, replace=TRUE)
> >>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> > 
> > [1] 3.66 0.02 3.76 0.00 0.00
> > 
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 1.65 0.05 1.70 0.00 0.00
> > 
> >>
> >>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> > 
> > [1] 2.59 0.02 2.61 0.00 0.00
> > 
> >>system.time(as.POSIXlt(paste(y,m,d, sep="-")))
> > 
> > [1] 2.73 0.00 2.74 0.00 0.00
> > 
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 1.29 0.01 1.30 0.00 0.00
> > 
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 0.94 0.00 0.94 0.00 0.00
> > 
> >>system.time(ymd.to.POSIXlt(y, m, d))
> > 
> > [1] 1.06 0.01 1.07 0.00 0.00
> > 
> > 
> > 
> > It seems as though the first simulation makes it "easier" for
> > subsequent simulations of the same type AND also for 
> simulations of a
> > somewhat different type also.  The degree to which it "helps" varies
> > according to just what is being run (no surprise there).  
> What I can't
> > figure out is what is happening that makes it quicker for second and
> > subsequent runs.
> > 
> > I even tried doing a gc() and setting seeds before each run 
> to make a
> > more direct comparison, but it made no difference other than being
> > slightly less variable.  I have seen a similar phenomenon in other
> > types of simulations.
> > 
> > In the case of this code, it makes no difference whether n is 100 or
> > 10000000.  Would that be attibutable to lazy evaluation?
> > 
> > 
> > 
> >>version
> > 
> >          _                
> > platform i686-pc-linux-gnu
> > arch     i686             
> > os       linux-gnu        
> > system   i686, linux-gnu  
> > status                    
> > major    1                
> > minor    9.0              
> > year     2004             
> > month    04               
> > day      12               
> > language R         
> > 
> > 
> > It's not exactly a problem, but it could have a bearing on comparing
> > processing times which is something that happens from time to time.
> > In the comparison that gave rise to the code above, the order would
> > have made a substantial difference to the perceived effectiveness of
> > Richard's code.
> > 
> > 
> 
> -- 
> Roger D. Peng
> http://www.biostat.jhsph.edu/~rpeng/
> 
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! 
> http://www.R-project.org/posting-guide.html
> 
>




More information about the R-help mailing list